首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈正豪 《科学通报》1993,38(12):1075-1075
由于量子尺寸受限效应和超周期性的存在,超晶格量子阱的导带中形成了量子化的子能带.这些子能带可以由控制垒宽、垒高和阱宽,以及由设计阱的形状而得到剪裁,使导带中子能带间光跃迁的红外共振吸收峰在相当宽的范围得到调节.所谓量子阱红外探测器,就是利用半导体超晶格量子阱材料子带间光跃迁的红外吸收特性研制而成的一种新颖、快速、高灵敏  相似文献   

2.
李道火  左都罗 《科学通报》1993,38(11):1054-1055
半导体纳米粒子(也称量子点)的尺寸接近激子玻尔半径时,出现一系列新特性,如能带量子化,最低电子跃迁蓝移和非线性效应增强等.这种量子限制效应引发了人们  相似文献   

3.
半导体超晶格与量子微结构研究30年   总被引:2,自引:0,他引:2  
彭英才 《自然杂志》1998,20(5):263-267
半导体超晶格与量子阱系指对电子具有一维量子限制作用的多层超薄异质结人工材料,量子微结构泛指对电子具有二维和三维量子约束性质的量子线与量子点介观系统.这类低维体系的研究是近30年来半导体科学技术中,尤其是半导体物理学领域内一个发展最迅速的活跃前沿.它的研究兴起,不仅对信息科学技术,而且对低维物理、材料科学以及纳米技术的发展,正在产生着革命牲的影响.本文着重回顾与评述了30年来半导体超晶格与量子微结构在材料生长工艺、体系维度变化、物理效应产生以及新型器件应用等方面所取得的一系列重大进展,并对其在21世纪的发展作了初步展望.  相似文献   

4.
刘尧 《科学通报》1994,39(16):1493-1493
近年来,在半导体光电化学领域中,半导体超晶格(量子阱)材料作为一种新型的光电极的研究已引起人们广泛的注意和重视.由于半导体超晶格(量子阱)能带的量子化,因此具有许多完全不同于体材料的新特性,如其量子阱中的激子受到阱宽的限制不仅寿命长于相应的体材料,而且有较强的光吸收性能;量子阱中光生热载流子的能量驰豫明显慢于体材料,具有较长的热载流子寿命,大大增强了热载流子效应以及其载流子迁移率大于体材料等.这些特性都有利于提高光能的转换效率.本文研究了晶格匹配型单量子阱GaAs/Al_xGa_(1-x)As电极  相似文献   

5.
GaAs/AlGaAs多量子阱红外探测器是基于量子阱导带内子能带间或子能带到扩展态间的光电子跃迁对红外辐射的吸收特性而研制成的新型红外探测器.它具有响应速度快(皮秒量级)、量子效率高、波长和带宽可调、热稳定性好、抗辐射能力强等特点,有利于制成大面积焦平面列阵红外探测器.近年来为了充分利用GaAs/AlGaAs量子阱材料的特点和优势,研究和探索新结构新器件的工作一直不断,其中光伏和双色红外探测器具有重要价值.光伏型探测器与信号处理电路易于集成,结构简单,功耗小,工作温度也较高,因而有利于发展焦平面列阵技术;3~5μm和8~12μm两个波段是重要的大气传输窗口,能同时工作在此波段的双色器件在军事、民用上有着特殊应用前景.本文的工作就是试图在理论上提出一种集光伏双色于一体的量子阱红外探测器结构.1 器件设计理论最近,AT&T Bell实验室Capasso小组证实,在量子阱层中,波函数的局域化也可以发生在大于势垒高度的连续态中.在主量子阱结构两旁的垒区中引入方势阱叠层,这些方势阱称作Bragg反射阱,由于Bragg方势阱宽度接近主量子阱连续态电子de Broglie波长的1/4,故反射相干作用可使主量子阱区的连续激发态密度集中于某些能量处,从而增加基态到这些准束缚态的跃迁振子强度,这对于实现器件光电吸收  相似文献   

6.
半导体量子阱超晶格作为一种新型的人工剪裁结构受到人们的普遍重视.该结构的特点之一就是可以利用在外电场调制作用下光学性质的变化来实现其在光电子学方面的应用,量子受限Stark效应(Quantum confined stark effect,简称QCSE)就是一个例子,它是指在外加垂直电场的作用下,跃迁能级能量的变化,这种能量的变化称为Stark位移.其不仅存在于半导体量子阱的带间跃迁中,同时也存在于子带间跃迁中.在包络函数近似下,利用求解一维Schr(?)dinger方程,研究了GaAs/AlGaAs阶梯量子阱结构中的Stark位移,通过微扰理论计算指出在一定的结构设计下,Stark位移量可以达到方形量子阱结构的两倍.根据理论计算,考虑到生长条件的具体限制,在半绝缘GaAs衬底上外延生长了样品.1μm GaAs缓冲层之上是50 nm的AlAs剥离层,然后是300 nm的Al_(0.3)Ga_(0.7)As层,接下来为50周期的阶梯量子阱结构.每个结构单元由 2 nm的 GaAs,8 nm的Al_(0.15)Ga_(0.85)As和4 nm的Al_(0.3)Ga_(0.7)As构成.在阶梯量子阱结构之后是200 nm的 Al_(0.3)Ga_(0.7)AS和  相似文献   

7.
在室温下测量了红荧烯掺杂有机薄膜光致发光的磁场效应.磁场效应的线型可以归结为外加磁场对掺杂的红荧烯分子间发生单重态激子裂变过程的调控作用.实验发现,光致发光磁场效应的幅度与红荧烯分子间的平均间距之间展现出非线性的对应关系.这种现象说明,当改变掺杂分子间的间距时,掺杂分子间的耦合强度变化可以对激子裂变过程的强度产生重要的影响.在理论上,磁效应幅度与分子间距之间的非线性关系可以采用朗道-齐纳的非绝热跃迁理论进行解释.而实验上,研究分子间耦合强度改变时激子裂变过程的变化,是研究激子裂变过程微观动力学的一种重要方法.本研究工作表明,对于利用单重态激子裂变敏化的有机光伏器件,分子间的耦合强度是一个需要考虑的重要因素.  相似文献   

8.
鲁圣国 《科学通报》1993,38(17):1622-1622
1 引言随着高新技术的发展,光电子学对非线性光学材料的需要愈来愈迫切。自从日本物理学家久保亮五首次提出金属纳米粒子的“Kubo效应”以来,纳米材料的研究异常活跃。纳米材料的研究已从金属粒子扩展到金属氧化物、极性化合物和半导体等。纳米复合材料提供了一种最容易的方式来研究低维量子阱材料(量子点、量子线等)。0—3nm复合材料就是将0维的量子点分散在3维的基体里面。3维的基体有玻璃、聚合物、无机  相似文献   

9.
我们在硅衬底上制备出了厚度在原子尺度上可控、宏观尺度上均匀的铅薄膜。我们观察到了随着厚度一个原子层一个原子层增加时薄膜超导转变温度的振荡现象。我们证明,这种振荡行为是量子尺寸效应的结果。在这种薄膜中,电子德布罗意波的干涉行为类同于光的法布里-玻罗干涉,会导致量子阱态的形成。量子阱态的形成改变了费米能级附近的电子态密度和电声子耦合强度,从而最后导致了超导转变温度的变化。我们的工作表明:通过精确控制这种厚度敏感的量子尺寸效应,可以调制材料的物理和化学性质。量子尺寸效应导致的金属薄膜材料的奇异超导性质@张…  相似文献   

10.
两能级量子系统中布居数反转的研究是量子调控中的前沿课题之一,在原子、分子物理以及量子信息等领域有着至关重要的意义.本文运用复合绝热通道技术,研究了正余弦函数形式外场驱动的两能级量子系统在有限时间内的跃迁问题,实现了有限时间内该系统的高保真度布居数反转.讨论了外场耦合强度、失谐强度等参数对跃迁概率的影响,发现只要选择合适的控制相位,在很大的参数范围内能够抑制跃迁概率的振荡,保真度能达到1,系统误差小于10?4,从而实现高效、快速、稳定,具有很好的参数鲁棒性的布居数完全反转.接着运用经典哈密顿量分析和验证了该方法的有效性和可行性.该技术适用于任何两能级系统,也能推广到多能级系统中,在量子信息、量子光学以及冷原子系统等领域有着广泛的应用.  相似文献   

11.
徐士杰 《科学通报》1993,38(10):897-897
半导体量子阱间的能级共振耦合及载流子共振隧穿是人们非常感兴趣的基本量子物理问题,而且它们有着重要的量子电子器件应用价值。由两个相互之间有耦合作用的量子阱组成的双阱结构是一个最简单的耦合量子阱系统。两个阱可以是相同的,也可以是不同的。由两个相同量子阱构成的对称耦合双阱系统,在通常情况下其能态是扩展的,形成一个对称态和一个反对称态;而由两个不同量子阱构成的非对称耦合双阱系统,在通常情况下其能态是局域  相似文献   

12.
潘栋  曾一平  吴巨  孔梅影 《科学通报》1997,42(15):1610-1613
量子点(QD)正引起人们很大的兴趣,这是因为理论上指出它有很好的器件应用前景.和量子阱相比,量子点在三个方向都受到限制,从而具有一系列独特的性质,如声子瓶颈效应等等.目前,利用Stranski-Krostanow生长模式原位生长QD,已取得了很大的成功.在Stranski-Krostanow生长模式中,先是逐层的二维生长(即浸润层),当达到一定的临界厚度,为了容纳外延层和衬底间的应力,变为岛状生长.由于当外延层厚度进一步增加,位错和应变弛豫会从岛边产生.  相似文献   

13.
贾童童  李听昕 《科学通报》2024,(14):1813-1814
<正>通过转角或晶格失配构造二维范德华材料莫尔超晶格为凝聚态物理、材料物理、光学等领域的研究注入了新的活力.过去几年的理论和实验工作表明[1~5],二维材料莫尔超晶格系统是研究和调控强关联与拓扑量子物态的理想平台.具体而言,基于多种二维半导体过渡金属硫族化合物莫尔超晶格,研究者先后实现了包括莫特绝缘体、强关联电子晶体态、近藤晶格、量子自旋霍尔效应、整数与分数量子反常霍尔效应等在内的一系列强关联和拓扑量子物态.  相似文献   

14.
<正>荧光碳量子点是近年来备受关注的一种碳基荧光探针,在荧光成像、传感器、复合催化剂、光电器件、能源转换、药物载体等方向和领域获得广泛研究.在之前工作的基础上,本文报道了以荧光碳量子点为探针,构建一种基于金属纳米颗粒内过滤效应的氰根离子传感器.本方法中,荧光碳量子点的激发和发射波长位置与金、银纳米颗粒的局域表面等离子体共振(LSPR)吸收峰波长位置相重叠,使得体系的荧光强度减弱;当加入氰根离子后,氰根将纳米颗粒刻蚀使其粒径变小,LSRP吸收峰强度降低,使得体系的荧光强度增强.当前已发展的以荧光碳量子点为探针的传感器以检测金属阳离子为主,  相似文献   

15.
TiO2超微粒的毛细作用排列   总被引:3,自引:0,他引:3  
超微粒子(UFP)的介观特性突出表现为量子限域的性质,其最基本的原因在于“尺寸效应”和“表面效应”。当粒子尺寸减小到可与电子的de Broglie波长(约12nm)相比拟或比其更小时,UFP成为所谓的量子点。从量子理论的基本原理出发,依据理想的量子点模型进行加工,可构造出新一代的量子电子器件。出于与理论模型设计进行相互验证,以及实际制作新型器件的需要,研究者们希望能将这些量子点进一步形成为一维或二维的量子点规则排列,成为某种超结构。  相似文献   

16.
《科学通报》2008,53(14)
在过去的十几年间,一维纳米材料尤其是纳米线引起了人们广泛的研究兴趣.纳米线独特的二维量子限域效应使得它们在诸如逻辑门、光检测、化学传感等领域有着广阔的应用前景.很多纳米材料与周围环境之间折光率的差异构成一个很好的亚波长尺度的谐振腔,因此过去几年间  相似文献   

17.
申鹏飞  李茜  罗志山  谭丽  韦祎  权泽卫 《科学通报》2021,66(25):3261-3271
金属卤化物作为一类新型光电材料,在发光二极管、太阳能电池、光电探测器、激光器等领域具有重要的应用前景.其晶体结构丰富且易被调节,通过在分子尺度上的控制,可由三维(3D)逐渐扩展至二维(2D)、一维(1D)及零维(0D).与三维金属卤化物相比,低维金属卤化物通常展现出更大的结构扭曲、更强的量子限域效应以及显著提升的激子结合能,使其成为在照明和显示领域备受关注的高效发光材料.现阶段,低维金属卤化物结构和光学性调控在依赖于传统化学手段的同时,也能够通过高压等物理手段完成.与传统化学调控手段不同,高压技术能够在不改变化学组分的前提下,对金属卤化物的结构和性能进行连续调制.本文首先介绍了传统化学手段对金属卤化物的结构和光学性质调控,随后讨论了高压技术在金属卤化物结构演变和光学性质优化方面的应用,重点阐述了其结构与光学性能之间的内在联系.本文为发光低维金属卤化物的合理设计与精准合成提供了重要的思路.  相似文献   

18.
量子霍尔效应是一种可以在宏观尺度出现的量子现象,由二维电子系统在强磁场下所具有的独特拓扑性质所引起.长期以来人们一直希望能够实现不需外磁场的量子霍尔效应,以便将其应用于低能耗电学器件.磁性拓扑绝缘体薄膜可能具有的量子化的反常霍尔效应即是一种可以在零磁场下出现的量子霍尔效应.本文介绍了拓扑绝缘体和量子反常霍尔效应的概念发展及量子反常霍尔效应如何在磁性掺杂拓扑绝缘体中实验实现,并探讨了量子反常霍尔效应在低能耗器件方面的应用前景.  相似文献   

19.
进一步提高全无机卤铅钙钛矿材料CsPbBr_3的发光效率,对制备高效率、高稳定性的电致发光二极管(PeLED)具有重要意义.制备纳米级的钙钛矿量子点,一方面有助于提高激子的束缚能和钙钛矿晶体的荧光效率,另一方面也有利于形成连续、致密的二维层状钙钛矿薄膜.本文采用"原位生长"的策略,将一种具有长链结构的丙基溴化胺(CH_3CH_2CH_2NH_3Br,PABr)作为添加剂,与CsPbBr_3的前驱体溶液进行共混,得到PA_2(CsPbBr_3)_(n-1)PbBr_4钙钛矿量子点.形成的二维层状钙钛矿薄膜均匀致密,在光致发光条件下,呈现出明亮的蓝绿光发射(发光峰位于506 nm).在电致发光方面,基于PA_2(CsPbBr_3)_(n-1)PbBr_4的PeLED启亮电压为~4.2 V,最大亮度为~2370 cd/m~2,最高电流效率为~1.06 cd/A,最高EQE为~0.57%.相较于传统方法,本工作在制作工艺、成膜质量以及PeLED的发光效率有了显著的提升,为将来进一步探索低成本、高效率的蓝光PeLEDs提供了一种可行的思路.  相似文献   

20.
叶朝辉 《科学通报》1984,29(14):850-850
在相距为ω_0的相邻能级之间,同时吸收或发射能量为ω_0/n的n个量子的多量子过程,称为次谐波共振(SHR)。通常该能对之间不存在实际的中间能级,跃迁是容许的,在脉冲激励情形下可以直接观测。然而,由于激励频率远离共振,激发效率很差,需要高阶微扰论处理。具有中间能级的多量子跃迁,在一级微扰论近似下是禁阻的,在脉冲激励情形下通常不能直接观测。这两种多量子跃迁都需要比单量子过程强得多的辐射场,以获得可以观测的效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号