首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为了研究掺合料对大掺量粉煤灰水泥强度的影响,确定合理的原材料配合比.分析了试验所用原材料的化学成分,通过24组试件试验, 采用试验的方法研究分析了不同龄期、不同掺合料及不同掺量情况下, 大掺量粉煤灰水泥强度的变化趋势.得出单掺粉煤灰的强度小于粉煤灰加矿渣的双掺强度小于单掺矿渣的强度.J2型激发剂可以提高早期和后期强度,K3型激发剂会导致早期强度下降.确定了合理的原材料配合比.  相似文献   

2.
激发剂对粉煤灰水泥胶凝材料水化性能的影响   总被引:2,自引:0,他引:2  
用结全水量、三甲基硅烷化--气相色谱、差热分析和X射线衍射等方法研究了激发剂对偻煤灰水泥胶凝材料水化性能的影响,发现激发剂能加快粉煤灰水泥胶凝材料的水化速度再水化,使粉煤灰先解聚再水化,粉煤灰中单掺激发剂,水化反映难以进行,激发剂对粉煤灰水泥胶凝材料的水化产物种类影响不大。  相似文献   

3.
采用氯盐类、硫酸盐类、碱类以及醇胺类外加剂,探究不同种类化学激发剂对循环流化床(CFB)粉煤灰水泥的活化效果及力学性能的影响规律。结果表明:无机类外加剂均可激发CFB粉煤灰水泥活性。综合来看,激发效果由强至弱依次为氯盐类硫酸盐类碱类;醇胺类激发剂掺量较少,且有很好的活性激发效果;尤其对后期强度有着显著的提高;其中DEIPA最佳掺量为0.01%,3 d抗压强度相比空白样提升2.4 MPa;28 d强度提高7 MPa,达到最高值47.5 MPa。  相似文献   

4.
系统测试与分析粉煤灰掺量(质量分数)为0,0.20,0.30和0.45的大坝粉煤灰混凝土的力学性能。  相似文献   

5.
利用粉煤灰和水泥熟料研究生产高掺量粉煤灰水泥。试验表明,辅助微量的铝基粉煤灰活性增强剂生产的粉煤灰水泥,3天、28天抗压强度指标完全满足国家标准要求,并且具有凝结硬化快,早期强度高和后期强度发展迅速等优点。  相似文献   

6.
颗粒组成和分布对大掺量粉煤灰水泥性能的影响   总被引:1,自引:0,他引:1  
中国是粉煤灰资源大国,粉煤灰综合利用率低,在水泥中粉煤灰的掺加量低于40%。研究粉煤灰掺加量大于50%的粉煤灰水泥技术已引起学术界和工程界的密切关注。将粉煤灰直接大量掺入水泥会导致水泥早期强度的降低和凝结时间的延长。本文研究的大掺量粉煤灰水泥,在水泥原材料中加入3%的晶核素,通过晶核诱导作用,使粉煤灰中的硅、铝氧化物迅速生长成稳定的水化矿物相,提高了粉煤灰水泥的早期强度,解决了大掺量粉煤灰水泥早期强度低的问题。粉煤灰的掺加量为50%和60%时,大掺量粉煤灰水泥达到了GB175-2007通用水泥标准的32.5#粉煤灰水泥性能指标要求。在此基础上,通过改变粉磨时间和粉煤灰掺加量,得到若干组不同的粉煤灰水泥试样,采用灰色关联分析研究方法,研究了颗粒组成及分布对大掺量粉煤灰水泥性能的影响。从而进一步研究颗粒级配和水泥性能之间的关系,并通过改变粉煤灰水泥的颗粒级配及组成来达到改善水泥性能的目的。结果表明:对同一配比的粉煤灰水泥,当粉磨时间改变后,影响水泥强度性能的颗粒区间会发生变化;不同配比的粉煤灰水泥,当粉磨时间不同时,其有效作用区间颗粒也有较大的差别,对不同龄期的抗压强度和抗折强度起作用的区间颗粒也不完全相同。  相似文献   

7.
以不同煅烧工艺所产熟料 (湿法水泥熟料、干法水泥熟料、立窑熟料 )掺入同数量、同质量粉煤灰后强度的变化为研究对象 ,探讨了粉煤灰对不同煅烧工艺生产熟料的水泥性能的影响。实验数据表明以立窑熟料品质掺加粉煤灰后强度最佳 ,湿法熟料则最差  相似文献   

8.
本文采用测定水化过程结合水量、XRD和 SEM等技术研究了纯高钙粉煤灰的水化及S—激发剂对高钙粉煤灰的激发作用。结果表明 ,高钙粉煤灰由于含有较多的 f Ca O,水化时产生较大的膨胀而使试样粉化、无一点强度 ,掺入 S—激发剂可较好地激发高钙粉煤灰的潜在水硬性 ,增加水化过程结合水量 ,从而使掺有 S—激发剂的高钙粉煤灰试样水化不同龄期后均有一定的强度  相似文献   

9.
为探究不同碱性化学试剂对矿渣、粉煤灰的活性激发效果,选取NaOH、Na2CO3、Na2SiO3三种常见的碱激发剂,以单掺、复合掺两种方式得到了7种不同类型的碱激发剂,并制备了三组不同水胶比的净浆试件,通过测试试件3d、7d、28d时间的静态力学性能,对比发现由NaOH与Na2SiO3制备的复合碱能最有效地激发矿渣、粉煤灰的活性。  相似文献   

10.
以钢渣、粉煤灰、水泥熟料为主要原料,并掺入少量激发剂,制备高混合材掺量高强复合水泥.研究钢渣细度、水泥的复合组分比例及激发剂对钢渣粉煤灰复合水泥性能的影响,并通过SEM、XRD分析激发剂对复合水泥水化性能的影响.结果表明:钢渣比表面积在310m2/kg以上时,钢渣具有较好的活性.激发剂可进一步增大钢渣、粉煤灰的水化活性,加快复合水泥的水化速度,从而提高水泥的力学性能,缩短水泥的凝结时间,但激发剂对复合水泥水化产物种类影响不大.  相似文献   

11.
试验研究了掺CFB灰渣水泥性能随灰渣掺量的变化规律,并探讨了添加激发剂和机械粉磨处理灰渣对水泥性能的影响。结果表明,随CFB灰渣掺量的增加,水泥强度随之降低,而当灰渣在水泥中的掺量不大于30%时,水泥强度可达到42.5水泥级别,当其掺量不大于40%时,水泥强度仍可达到32.5水泥级别。激发剂A能有效提高水泥早期强度,而激发剂B对提高水泥后期强度的贡献较大,同时激发剂A使粉煤灰和炉渣的28 d反应程度分别提高4.1%和3.5%,并促进掺灰渣水泥的水化产物中C-S-H凝胶增多,提高产物结构致密度。机械粉磨处理后能有效提高粉煤灰的活性,水泥强度和粉煤灰反应程度与粉磨时间成正比关系,而粉煤灰需水量比随粉磨时间的延长而先下降后升高。  相似文献   

12.
循环流化床锅炉内掺高硫石油焦混烧脱硫灰的矿物相组成   总被引:1,自引:0,他引:1  
粉煤灰的矿物相组成对其资源化具有重要意义,它主要取决于燃料品种和燃烧过程.由于燃烧过程的差异,循环流化床锅炉(CFBC)内掺加高硫石油焦和煤混烧而排放的脱硫灰与煤粉炉粉煤灰在矿物相组成上具有较大差异.利用扫描电镜(SEM)、X-ray衍射(XRD)和傅立叶转换红外光谱(FT-IR)对CFBC掺高硫石油焦混烧脱硫灰的矿物相组成进行了研究,同时采用选择性溶解分离和重力分离的方法富集脱硫灰中的微量矿物,研究表明CFBC掺高硫石油焦混烧脱硫灰的矿物相组成以高α-石英、硬石膏和石灰含量为其主要特征,同时含有少量的方解石、莫来石、钙长石、钙铝黄长石、赤铁矿、硅酸二钙(2CaO·SiO2,C2S)、铝酸三钙(3CaO·Al2O3,C3A)、七铝酸十二钙(12CaO·7Al2O3,C12A7)及透辉石等矿物,可能含有少量玻璃相.如果样品在空气中存放时间较长,石灰吸收空气中的水分会导致羟钙石生成.而煤粉炉粉煤灰中的矿物主要为莫来石、石英和少量的赤铁矿,并含有大量的玻璃相.  相似文献   

13.
利用X射线荧光光谱仪、XRD等检测手段对循环流化床粉煤灰进行化学成分定性和定量分析,然后确定其质量配合比:粉煤灰65%,水泥12%,石灰20%,石膏3%.主要研究了在蒸压养护条件下,不同水料比、不同铝粉添加量、不同无机添加剂硫酸钠、氯化钙添加量对加气混凝土砌块容重和强度的影响,研究发现最佳水料比为0.65,最佳铝粉掺量为0.1%,无机添加剂硫酸钠对加气混凝土砌块的容重和强度影响不大,而添加0.25%的氯化钙比无添加剂条件下强度提高了40%,达到4.55 MPa,容重为900 kg/m3,随着氯化钙量的增加,强度反而下降.  相似文献   

14.
针对上海苏州河区域的软土特点,将粉煤灰和水泥作为固化材料加固饱和软黏土,研究粉煤灰对水泥土力学特性的影响.通过无侧限抗压强度试验,研究了不同粉煤灰掺量、水泥掺量以及不同龄期对水泥土强度和变形特性的影响;通过Matlab数据拟合,提出了水泥粉煤灰固化土的强度预测方法.随着龄期的增长和粉煤灰掺量的增加,固化土的应力应变关系由塑性破坏转变成脆性破坏.当粉煤灰掺量过高时,水泥土中易发生耦合反应,影响固化效果.因此,水泥掺量与粉煤灰掺量比例为1∶1,且粉煤灰最佳掺量为14%~18%.  相似文献   

15.
研究表明,循环流化床中粒子的循环速率决定了密相层和疏相层的空隙率。沿着粒子循环线的压力平衡控制了密相层的高度。在下降管中的粒子持有量和风力(?)的压力降决定了流化床的压力平衡。当风力阀的压降太大,或者在下降管中的粒子持有量不足,密相层消失。整个流化床成为疏相流动床。试验表明,当流速增至5m/s,没有产生从湍流流化床转化为其它形式的流化床。  相似文献   

16.
为了研究和开发增压循环床燃烧装置,在一个床体内径为80mm,高为6m的增压循环床内对其流动及操作特性进行了冷态试验研究。本文发表了床料粒径、筛分对床内空隙率分布的影响以及压力对增压循环流化床运行特性影响的试验结果,并讨论了它们对煤在增压循环流化床中燃烧可能产生的影响。  相似文献   

17.
马海彬  徐晨 《科学技术与工程》2023,23(23):10067-10074
为了研究粉煤灰与矿渣对水泥砂浆动态力学性能的影响,用粉煤灰与矿渣替代40%的胶凝材料,其中矿渣掺量分别为0、10%、20%、30%、40%,采用?50 mm的分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)试验装置,对各组砂浆进行4种加载气压的冲击压缩试验,并测试砂浆的静态抗压强度。对不同冲击气压下的应力-应变曲线、动态强度增长因子(dynamic increase factor, DIF)和破坏形态进行分析。结果表明:随着矿渣掺量的增加,砂浆的静动态抗压强度均随之增大,掺量为30%~40%时已接近甚至超过对照组砂浆,但动态抗压强度提升幅度有减缓趋势;相同矿渣掺量下,砂浆的动态峰值应力、动态峰值应变、平均应变率和极限韧性均与冲击荷载大小呈正相关,有明显的应变率效应;平均应变率在91.15~158.34 s-1时,掺30%~40%矿渣砂浆的动态抗压强度和DIF均高于对照组;冲击气压越大,砂浆破坏程度越高,掺30%~40%矿渣砂浆的碎块数量更少、尺寸更大。因此掺30%~40%矿渣砂浆具有更优越的抗冲击性能,这为工业废料的合理利...  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号