首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structure of heavy-fermion compounds arises from the interaction of nearly localized 4f- or 5f-shell electrons (with atomic magnetic moments) with the free-electron-like itinerant conduction-band electrons. In actinide or rare-earth heavy-fermion materials, this interaction yields itinerant electrons having an effective mass about 100 times (or more) the bare electron mass. Moreover, the itinerant electrons in UPd2Al3 are found to be superconducting well below the magnetic ordering temperature of this compound, whereas magnetism generally suppresses superconductivity in conventional metals. Here we report the detection of a dispersive excitation of the ordered f-electron moments, which shows a strong interaction with the heavy superconducting electrons. This 'magnetic exciton' is a localized excitation which moves through the lattice as a result of exchange forces between the magnetic moments. By combining this observation with previous tunnelling measurements on this material, we argue that these magnetic excitons may produce effective interactions between the itinerant electrons, and so be responsible for superconductivity in a manner analogous to the role played by phonons in conventional superconductors.  相似文献   

2.
The electrical resistance of a conductor is intimately related to the relaxation of the momentum of charge carriers. In a simple model, the accelerating force exerted on electrons by an applied electric field is balanced by a frictional force arising from their frequent collisions with obstacles such as impurities, grain boundaries or other deviations from a perfect crystalline order. Thus, in the absence of any scattering, the electrical resistance should vanish altogether. Here, we observe such vanishing four-terminal resistance in a single-mode ballistic quantum wire. This result contrasts the value of the standard two-probe resistance measurements of h/2e2 approximately 13 kOmega. The measurements are conducted in the highly controlled geometry afforded by epitaxial growth onto the cleaved edge of a high-quality GaAs/AlGaAs heterostructure. Two weakly invasive voltage probes are attached to the central section of a ballistic quantum wire to measure the inherent resistance of this clean one-dimensional conductor.  相似文献   

3.
测试了电阻型湿度传感器在低湿和高湿区的伏安特性,并根据伏安特性的测试数据,分析了该湿度传感器的导电机理,结果表明,在低湿区,其主要导电载流子是电子;在高湿区,其主要导电载流子是湿敏材料中的去离子。  相似文献   

4.
Picosecond and femtosecond spectroscopy allow the detailed study of carrier dynamics in nanostructured materials. In such experiments, a laser pulse normally excites several nanostructures at once. However, spectroscopic information may also be acquired using pulses from an electron beam in a modern electron microscope, exploiting a phenomenon called cathodoluminescence. This approach offers several advantages. The multimode imaging capabilities of the electron microscope enable the correlation of optical properties (via cathodoluminescence) with surface morphology (secondary electron mode) at the nanometre scale. The broad energy range of the electrons can excite wide-bandgap materials, such as diamond- or gallium-nitride-based structures that are not easily excited by conventional optical means. But perhaps most intriguingly, the small beam can probe a single selected nanostructure. Here we apply an original time-resolved cathodoluminescence set-up to describe carrier dynamics within single gallium-arsenide-based pyramidal nanostructures with a time resolution of 10 picoseconds and a spatial resolution of 50 nanometres. The behaviour of such charge carriers could be useful for evaluating elementary components in quantum computers, optical quantum gates or single photon sources for quantum cryptography.  相似文献   

5.
Fujisawa T  Austing DG  Tokura Y  Hirayama Y  Tarucha S 《Nature》2002,419(6904):278-281
The strength of radiative transitions in atoms is governed by selection rules that depend on the occupation of atomic orbitals with electrons. Experiments have shown similar electron occupation of the quantized energy levels in semiconductor quantum dots--often described as artificial atoms. But unlike real atoms, the confinement potential of quantum dots is anisotropic, and the electrons can easily couple with phonons of the material. Here we report electrical pump-and-probe experiments that probe the allowed and 'forbidden' transitions between energy levels under phonon emission in quantum dots with one or two electrons (artificial hydrogen and helium atoms). The forbidden transitions are in fact allowed by higher-order processes where electrons flip their spin. We find that the relaxation time is about 200 micro s for forbidden transitions, 4 to 5 orders of magnitude longer than for allowed transitions. This indicates that the spin degree of freedom is well separated from the orbital degree of freedom, and that the total spin in the quantum dots is an excellent quantum number. This is an encouraging result for potential applications of quantum dots as basic entities for spin-based quantum information storage.  相似文献   

6.
Manyala N  Sidis Y  DiTusa JF  Aeppli G  Young DP  Fisk Z 《Nature》2000,404(6778):581-584
The desire to maximize the sensitivity of read/write heads (and thus the information density) of magnetic storage devices has stimulated interest in the discovery and design of new magnetic materials exhibiting magnetoresistance. Recent discoveries include the 'colossal' magnetoresistance in the manganites and the enhanced magnetoresistance in low-carrier-density ferromagnets. An important feature of these systems is that the electrons involved in electrical conduction are different from those responsible for the magnetism. The latter are localized and act as scattering sites for the mobile electrons, and it is the field tuning of the scattering strength that ultimately gives rise to the observed magnetoresistance. Here we argue that magnetoresistance can arise by a different mechanism in certain ferromagnets--quantum interference effects rather than simple scattering. The ferromagnets in question are disordered, low-carrier-density magnets where the same electrons are responsible for both the magnetic properties and electrical conduction. The resulting magnetoresistance is positive (that is, the resistance increases in response to an applied magnetic field) and only weakly temperature-dependent below the Curie point.  相似文献   

7.
The parent compounds of the copper oxide high-transition-temperature (high-Tc) superconductors are unusual insulators (so-called Mott insulators). Superconductivity arises when they are 'doped' away from stoichiometry. For the compound Bi2Sr2CaCu2O8+x, doping is achieved by adding extra oxygen atoms, which introduce positive charge carriers ('holes') into the CuO2 planes where the superconductivity is believed to originate. Aside from providing the charge carriers, the role of the oxygen dopants is not well understood, nor is it clear how the charge carriers are distributed on the planes. Many models of high-Tc superconductivity accordingly assume that the introduced carriers are distributed uniformly, leading to an electronically homogeneous system as in ordinary metals. Here we report the presence of an electronic inhomogeneity in Bi2Sr2CaCu2O8+x, on the basis of observations using scanning tunnelling microscopy and spectroscopy. The inhomogeneity is manifested as spatial variations in both the local density of states spectrum and the superconducting energy gap. These variations are correlated spatially and vary on the surprisingly short length scale of approximately 14 A. Our analysis suggests that this inhomogeneity is a consequence of proximity to a Mott insulator resulting in poor screening of the charge potentials associated with the oxygen ions left in the BiO plane after doping, and is indicative of the local nature of the superconducting state.  相似文献   

8.
One view of the high-transition-temperature (high-Tc) copper oxide superconductors is that they are conventional superconductors where the pairing occurs between weakly interacting quasiparticles (corresponding to the electrons in ordinary metals), although the theory has to be pushed to its limit. An alternative view is that the electrons organize into collective textures (for example, charge and spin stripes) which cannot be 'mapped' onto the electrons in ordinary metals. Understanding the properties of the material would then need quantum field theories of objects such as textures and strings, rather than point-like electrons. In an external magnetic field, magnetic flux penetrates type II superconductors via vortices, each carrying one flux quantum. The vortices form lattices of resistive material embedded in the non-resistive superconductor, and can reveal the nature of the ground state-for example, a conventional metal or an ordered, striped phase-which would have appeared had superconductivity not intervened, and which provides the best starting point for a pairing theory. Here we report that for one high-Tc superconductor, the applied field that imposes the vortex lattice also induces 'striped' antiferromagnetic order. Ordinary quasiparticle models can account for neither the strength of the order nor the nearly field-independent antiferromagnetic transition temperature observed in our measurements.  相似文献   

9.
给出了一个简化模型描述载流子在电流变液中的输运 .颗粒极化可分为两部分 ,慢极化分量由载流子的受阻输运所致 ;快极化分量是载流子所在介电背景的极化 .在切变场中 ,一个强的电流变强度要求强而相对稳定的颗粒相互作用 .大的极化强度确保相互作用强度 ,合适的极化速率和介电损耗以保证颗粒相互作用的相对稳定性 .根据计算结果并考虑到切变场对介电响应的影响 ,这里给出一个半经验电流变活性判据 :对于ω <10 3s-1,ωτ >10 -4 ,存在 1相似文献   

10.
由t-J模型出发,在Feimion-spin理论框架下研究了有Cu-O链的双层三角晶格反铁磁体的c-轴电荷动力学.与面内电荷动力学不同的是,c-轴电荷输运与材料的种类有关,也就是说,它依赖于CuO2平面间的化学组成成分.材料中CuO2平面之间是否有Cu-O链,对于材料的物理性质有很大的影响.对于层间存在Cu-O链的材料,c-轴方向的电荷动力学主要是由CuO2平面内holon的散射决定的.双层三角晶格反铁磁体正常态电荷动力学与单层材料一样,也存在着很强的各向异性行为.由三角晶格得到的结果与四方晶格相类似,但是由于三角晶格自身存在的几何阻挫效应,使得二者的结果稍有差异.  相似文献   

11.
In this paper,we investigated the recombination dynamics of photogenerated charge carriers in a poly(3-hexylthiophene)(P3HT):[6,6]-phenyl-C 61-butyric acid methyl ester(PC 61 BM) blend system with donor-acceptor ratio of 1:1 before and after solvent annealing treatment.The technique of transient photocurrent and photovoltage measurements were used,and charge carriers were photogenerated by a 7 ns laser pulse at room temperature(298 K).In transient photocurrent measurement,we observed some differences in the saturation extracted charge in P3HT:PCBM solar cells with different power efficiencies.In addition,the bimolecular recombination coefficient is found to be 3.5×10-13 cm 3 s-1 for annealed devices,while 9.5×10-12 cm3 s-1 for as-cast devices.In the transient photovoltage measurement,we found that the photovoltage decay can be fitted by power-law equation at long time scale.The exponent parameter is 2.6 for annealed devices,which can be described as trap-free bimolecular recombination;is 1.76 for as-cast device due to the trap-limited bimolecular recombination.These experimental results indicate that the nanomorphology of active layer indeed have influence on charge carriers dynamics in P3HT:PCBM blend systems.  相似文献   

12.
Bipolar supercurrent in graphene   总被引:3,自引:0,他引:3  
Graphene--a recently discovered form of graphite only one atomic layer thick--constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance, which is now understood theoretically, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e(2)/h (where e is the electron charge and h is Planck's constant) at the charge neutrality (or Dirac) point, have come as a surprise and remain to be explained. Here we experimentally study the Josephson effect in mesoscopic junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes. The charge density in the graphene layer can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene, and demonstrate phase coherent electronic transport at the Dirac point.  相似文献   

13.
R W Hill  C Proust  L Taillefer  P Fournier  R L Greene 《Nature》2001,414(6865):711-715
The behaviour of electrons in solids is well described by Landau's Fermi-liquid theory, which predicts that although electrons in a metal interact, they can still be treated as well defined fermions, which are called 'quasiparticles'. At low temperatures, the ability of quasiparticles to transport heat is given strictly by their ability to transport charge, as described by a universal relation known as the Wiedemann-Franz law, which hitherto no material has been known to violate. High-temperature superconductors have long been thought to fall outside the realm of Fermi-liquid theory, as suggested by several anomalous properties, but this has yet to be shown conclusively. Here we report an experimental test of the Wiedemann-Franz law in the normal state of a copper-oxide superconductor, (Pr,Ce)2CuO4, which reveals that the elementary excitations that carry heat in this material are not fermions. This is compelling evidence for the breakdown of Fermi-liquid theory in high-temperature superconductors.  相似文献   

14.
Electrostatic coupling between particles is important in many microscopic phenomena found in nature. The interaction between two isolated point charges is described by the bare Coulomb potential, but in many-body systems this interaction is modified as a result of the collective response of the screening cloud surrounding each charge carrier. One such system involves ultrafast interactions between quasi-free electrons in semiconductors-which are central to high-speed and future quantum electronic devices. The femtosecond kinetics of nonequilibrium Coulomb systems has been calculated using static and dynamical screening models that assume the instantaneous formation of interparticle correlations. However, some quantum kinetic theories suggest that a regime of unscreened bare Coulomb collisions might exist on ultrashort timescales. Here we monitor directly the temporal evolution of the charge-charge interactions after ultrafast excitation of an electron-hole plasma in GaAs. We show that the onset of collective behaviour such as Coulomb screening and plasmon scattering exhibits a distinct time delay of the order of the inverse plasma frequency, that is, several 10(-14) seconds.  相似文献   

15.
利用Landauer-Büttiker散射理论和传递矩阵方法研究了单层石墨烯双势垒结构中的隧穿几率和电导.计算结果表明:即使存在克莱因隧穿效应,单层石墨烯双势垒结构中的量子隧穿仍然与势阱宽度和势垒高度密切相关.隧穿几率和电导表现出复杂的振荡行为,振荡的振幅和周期敏感地依赖于势阱宽度、势垒高度、电子的入射能量和入射角度....  相似文献   

16.
Superconductivity in CaCuO2 as a result of field-effect doping.   总被引:2,自引:0,他引:2  
Understanding the doping mechanisms in the simplest superconducting copper oxide-the infinite-layer compound ACuO2 (where A is an alkaline earth metal)-is an excellent way of investigating the pairing mechanism in high-transition-temperature (high-Tc) superconductors more generally. Gate-induced modulation of the carrier concentration to obtain superconductivity is a powerful means of achieving such understanding: it minimizes the effects of potential scattering by impurities, and of structural modifications arising from chemical dopants. Here we report the transport properties of thin films of the infinite-layer compound CaCuO2 using field-effect doping. At high hole- and electron-doping levels, superconductivity is induced in the nominally insulating material. Maximum values of Tc of 89 K and 34 K are observed respectively for hole- and electron-type doping of around 0.15 charge carriers per CuO2. We can explore the whole doping diagram of the CuO2 plane while changing only a single electric parameter, the gate voltage.  相似文献   

17.
Rønnow HM  Renner Ch  Aeppli G  Kimura T  Tokura Y 《Nature》2006,440(7087):1025-1028
A remarkable feature of layered transition--metal oxides-most famously, the high-temperature superconductors--is that they can display hugely anisotropic electrical and optical properties (for example, seeming to be insulating perpendicular to the layers and metallic within them), even when prepared as bulk three-dimensional single crystals. This is the phenomenon of 'confinement', a concept at odds with the conventional theory of solids, and recognized as due to magnetic and electron-lattice interactions within the layers that must be overcome at a substantial energy cost if electrons are to be transferred between layers. The associated energy gap, or 'pseudogap', is particularly obvious in experiments where charge is moved perpendicular to the planes, most notably scanning tunnelling microscopy and polarized infrared spectroscopy. Here, using the same experimental tools, we show that there is a second family of transition-metal oxides--the layered manganites La(2-2x)Sr(1+2x)Mn2O7--with even more extreme confinement and pseudogap effects. The data demonstrate quantitatively that because the charge carriers are attached to polarons (lattice- and spin-textures within the planes), it is as difficult to remove them from the planes through vacuum-tunnelling into a conventional metallic tip, as it is for them to move between Mn-rich layers within the material itself.  相似文献   

18.
Electronic correlations govern the dynamics of many phenomena in nature, such as chemical reactions and solid state effects, including superconductivity. Such correlation effects can be most clearly investigated in processes involving single atoms. In particular, the emission of two electrons from an atom--induced by the impact of a single photon, a charged particle or by a short laser pulse--has become the standard process for studies of dynamical electron correlations. Atoms and molecules exposed to laser fields that are comparable in intensity to the nuclear fields have extremely high probabilities for double ionization; this has been attributed to electron-electron interaction. Here we report a strong correlation between the magnitude and the direction of the momentum of two electrons that are emitted from an argon atom, driven by a femtosecond laser pulse (at 38 TW cm(-2)). Increasing the laser intensity causes the momentum correlation between the electrons to be lost, implying that a transition in the laser-atom coupling mechanism takes place.  相似文献   

19.
Superconductivity in layered copper oxide compounds emerges when charge carriers are added to antiferromagnetically ordered CuO(2) layers. The carriers destroy the antiferromagnetic order, but strong spin fluctuations persist throughout the superconducting phase and are intimately linked to superconductivity. Neutron scattering measurements of spin fluctuations in hole-doped copper oxides have revealed an unusual 'hour-glass' feature in the momentum-resolved magnetic spectrum that is present in a wide range of superconducting and non-superconducting materials. There is no widely accepted explanation for this feature. One possibility is that it derives from a pattern of alternating spin and charge stripes, and this idea is supported by measurements on stripe-ordered La(1.875)Ba(0.125)CuO(4) (ref. 15). Many copper oxides without stripe order, however, also exhibit an hour-glass spectrum. Here we report the observation of an hour-glass magnetic spectrum in a hole-doped antiferromagnet from outside the family of superconducting copper oxides. Our system has stripe correlations and is an insulator, which means that its magnetic dynamics can conclusively be ascribed to stripes. The results provide compelling evidence that the hour-glass spectrum in the copper oxide superconductors arises from fluctuating stripes.  相似文献   

20.
采用双探头符合技术测量Ni、Al、Zr、Nb、NiAl及Ni50Al48Zr2、Ni50Al48Nb2样品的正电子湮没辐射的多普勒展宽谱.从谱线提取正电子与样品中d电子湮没的信息,发现正电子与NiAl样品的d电子湮没信号因Ni3d-Al 3p电子杂化而相对降低,Zr、Nb的添加导致合金样品中d-d电子作用增强、谱线d电子信号增大,添加Nb的样品谱线峰高于添加Zr样品,说明Nb的加入比Zr抑制d-p电子作用效果更佳.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号