首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
针对传统粒子群优化技术存在易陷入局部最优解而导致的收敛速度变慢、多样性差的缺点,对参数设置进行研究,并提出一种基于向量差的粒子群优化模型,将2个随机选择的不同向量差加权到粒子速度更新公式中,能够使粒子摆脱局部最小值而向全局搜索.经对几个典型函数的测试,表明该模型效果较好.  相似文献   

2.
本研究通过对核极限学习机的原理进行分析,确定优化参数,分析粒子群算法的基本原理,并对多种改进的粒子群算法进行研究,通过基准测试函数对6种算法的优劣进行分析。笔者选取综合学习粒子群算法为优化核极限学习机的基本框架,并将线性递减惯性权重和综合学习粒子群算法进行结合,用于改进粒子群算法易陷入局部最优的问题,从而实现对核极限学习机的参数优化。  相似文献   

3.
粒子群算法具有计算简单,收敛速度快和良好的全局与局部收敛能力等特点.通过对珩磨加工工艺参数的分析,构建了基于粒子群算法的珩磨加工参数智能选择模型,在理论模型的基础上通过实验数据对模型参数进行了优化.研究证明该方法用于珩磨加工工艺参数的选择具有可靠性高、选择操作简单、实用性强等优点.  相似文献   

4.
提出了一种能够利用云计算分布式计算特点以提高性能的粒子群优化算法.仿真实验表明,该算法不仅能利用云计算特征,而且算法在3种常见Benchmark函数测试中所找到的最小值平均比同等粒子群规模的标准粒子群算法低71%以上.  相似文献   

5.
基于粒子群优化的粒子滤波算法精度不高,运算复杂度大,难以在实际工程中应用. 为此,文中提出一种新型邻域自适应调整的动态粒子群优化粒子滤波算法. 该算法考虑了粒子的邻域信息,利用多样性因子、邻域扩展因子和邻域限制因子共同对粒子的邻域粒子数量进行自适应调整,控制粒子对邻域的影响,减轻局部最优现象,达到收敛速度和寻优能力的最佳平衡. 利用UNGM模型、目标跟踪模型以及故障检测模型对算法的性能进行仿真测试,结果表明:该算法与PSO-PF相比提高了精度和运算速度,具有实际工程应用价值.  相似文献   

6.
为克服粒子群优化算法容易陷入局部最优的缺点,根据混沌运动的随机性、遍历性特点,提出一种基于混沌思想的粒子群优化算法(CPSO).该算法利用种群适应度方差进行早熟收敛判断,实现对进化过程的监视,当发现种群陷入局部最优时,对种群进行混沌初始化,帮助种群摆脱局部最优点.对4种典型测试函数的仿真结果表明,改进算法明显减少了种群陷入局部最优的可能性,其全局寻优能力明显强于标准粒子群优化算法.  相似文献   

7.
针对混合有源滤波器中无源滤波器设计过分依赖经验与无源滤波器优化能力不强的问题,提出改进粒子群优化算法PSO(Particle Swarm Optimization,PSO)进行无源滤波器的多目标参数优化设计.对无源滤波器的成本,无功补偿容量及补偿后滤波效果3个目标全局优化.利用改进的粒子群对其参数进行了优化设计,使种群...  相似文献   

8.
为提高医学图像辅助诊断的配准精度和收敛速度,提出了一种基于混合互信息和改进粒子群优化算法的医学图像配准算法,在每步迭代中,先用基于Renyi熵的互信息结合改进粒子群优化算法对图像进行全局搜索,然后对当前得到的最优解使用基于Shannon熵的Powell算法进行局部寻优。实验结果表明,该算法在收敛速度和精度方面都优越于其他配准算法。  相似文献   

9.
多传感器的像素级图像融合中,如果对源图像进行线性运算以得到融合图像,源图像的置信度取值一般只能由经验和个人主观感觉来确定,并不能得到令人满意的融合效果.本文针对这一问题提出了一种基于粒子群优化算法的像素级图像融合的算法.该算法可以根据融合的目的采用不同的融合指标,应用粒子群优化算法得到比较满意的融合图像.实验结果表明该算法优于其它的几种像素级图像融合算法.  相似文献   

10.
基于粒子群算法优化的T-S型模糊神经网络控制器   总被引:3,自引:1,他引:3  
粒子群优化(PSO)算法是一种新颖的演化算法,该算法通过粒子间的相互作用在复杂搜索空间中发现最优区域,其优势在于简单而功能强大。提出一种T-S型模糊神经网络控制器,采用PSO算法对模糊神经网络的前件参数和后件参数进行寻优,从而实现了模糊规则的自动调整、修改和完善。通过对非线性和时变被控对象的仿真研究,结果表明采用粒子群优化算法可以实现参数的全局快速寻优,而且优化后的T-S型模糊神经网络控制器能获得良好的控制性能。  相似文献   

11.
遗传算法与微粒群算法的比较   总被引:1,自引:0,他引:1  
通过几个测试函数对遗传算法和微粒群算法进行了比较.结果表明在寻找最优解的最优值和速度方面,微粒群算法优于遗传算法.  相似文献   

12.
基于人工萤火虫群优化算法,参考人类社会商业组织中的分层管理模式,将人工萤火虫群随机地分布在 一个层次结构中,并在过程中加入变异因子,改进基本人工萤火虫群优化算法,提出用于函数优化的层次结构人工 萤火虫群优化算法. 对4个标准函数的测试表明,层次结构萤火虫群算法在高维函数优化方面比基本人工萤火虫群 优化算法性能更优.  相似文献   

13.
为解决深海资源探测图像识别难题,提出一种基于粒子群优化的图像暗边缘检测优化算法。该算法通过指数型线性单元和高斯误差线性单元改进激活函数,根据Marr-Hildreth算子检测结果并结合改进激活函数构建暗边缘检测算法,利用粒子群对改进暗边缘检测算法进行训练和优化。最后,采用不同算法对水下11个数据集进行比较的结果表明:改进算法的峰值信噪比、结构相似度和边缘保持指数最高,分别达到18.769 6 dB、0.660 7和0.834 5;图像均方误差最低,为3 750.225 3;平均检测时间为0.667 4 s,比其他对比实验中性能最好的算法缩短了14%。  相似文献   

14.
摘要: 为提高异构环境下大规模动态组播的吞吐量并减小速率抖动,提出一种复合型组播拥塞控制机制(composite multicast congestion control, CMCC). 该机制在基层和增强层使用不同的速率调节方案:基层使用单速率机制控制发送速率,防止接收能力较弱的接收端被“排挤”出组;增强层使用最优化的方法分配速率以提高组播吞吐量并平滑发送速率. CMCC以最大化全局满意度和最小化速率抖动为目标将增强层速率的分配归纳为多目标优化问题,并选用收敛速度快、参数少且计算量小的多目标粒子群优化算法搜索最优解. 仿真结果表明,CMCC能有效提高组播吞吐量,平滑发送速率,且计算量小,实时性高,适用于具有异质接收端的大规模组播.  相似文献   

15.
提出一种基于粒子群优化算法的PID控制器设计方法,该方法定义一个包含系统超调量、上升时间和稳态误差指标项的适应度函数,根据控制系统的实际要求对各指标项进行适当加权。采用带收缩因子的粒子群算法对PID进行多目标寻优,实现了PID控制器的自动参数整定。应用该方法得到的PID控制器综合性能优于常规方法得到的PID控制器。  相似文献   

16.
基于粒子群优化的BP神经网络预测方法及其应用研究   总被引:1,自引:0,他引:1  
本文提出了一种基于粒子群优化的BP神经网络预测方法.该方法利用粒子群优化算法全局搜索BP神经网络的权值和阈值,并利用优化后的BP网络建立预测模型对经济指标进行预测.仿真实验结果表明,该方法克服了传统BP神经网络本身所存在的局部最小值和训练速度慢等不足,能够较好应用于定量经济指标预测,有效提高了预测的精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号