共查询到17条相似文献,搜索用时 78 毫秒
1.
基于免疫进化算法的径向基函数网络 总被引:7,自引:1,他引:7
基于免疫进化算法,提出了一种设计径向基函数(RBF)网络的新算法——免疫径向基函数网络(IRBF)训练算法.该算法通过提取RBF网络核函数宽度的先验知识作为疫苗构成免疫算子,缩小了标准进化算法搜索空间的范围,提高了算法的收敛速度.计算机仿真表明,采用这种算法训练的RBF网络达到了较好的性能. 相似文献
2.
采用径向基函数神经网络在时域上对含噪语音信号进行降噪处理.针对语音信号的短时平稳性以及噪声的随机性,对语音信号进行分帧预处理;用分帧后的纯净语音信号作为径向基函数网络的教师信号,并利用Matlab神经网络工具箱设计和训练网络.实验结果表明,径向基函数网络作为语音信号滤波器,可有效地抑制语音信号中的白噪声,具有良好的降噪性能. 相似文献
3.
一种基于蚁群聚类的径向基神经网络 总被引:2,自引:0,他引:2
提出了一种基于蚁群聚类算法的径向基神经网络.利用蚁群算法的并行寻优特征和挥发系数方法的自适应更改信息量的能力,并以球面聚类的方式确定了径向基神经网络中基函数的位置,同时通过比较隐层神经元的相似性、合并相似性较为接近的2个神经元来约简隐含层的神经元,以达到简化径向基神经网络结构的目的.实验比较了几种不同聚类算法的径向基神经网络,结果表明,所提神经网络的整体训练时间至少可缩短40%,学习的准确率可提高1%以上,而且网络结构更加精简. 相似文献
4.
基于径向基函数神经网络的水轮发电机组效率曲线计算方法 总被引:1,自引:0,他引:1
提出用径向基函数(RBF)神经网络进行水轮发电机组效率曲线计算的方法,并建立了径向基函数神经网络模型,以有限水头下原型效率试验数据为样本进行训练,所得的网络可快速准确地计算任意水头下的效率特性曲线。与BP神经网络模型的对比结果表明,该方法避免了BP神经网络的局部极小及收敛速度慢等缺点,在精度、训练速度等方面优于BP神经网络。 相似文献
5.
为提高神经网络模型的预测精度以及提高模型的计算效率,减少获得高精度模型的计算量,构建了基于正交最小二乘法的高斯径向基神经网络模型结构,给出了最小二乘法高斯径向基神经网络的递归模型.依据样本点序列信息,给出了高斯径向基函数中心参数的确定方法,并采用正交最小二乘法回归迭代,从而获得隐层同输出层间的连接权参数值.采用混沌Lorenz时间序列预测问题对该设计的网络模型进行验证,并同其他文献对该序列预测的精度以及迭代所需的时间作对比.结果表明,采用该设计方法获得的网络模型具有时间预测精度高及计算效率高等优点. 相似文献
6.
通过分析当前运用较多的入侵检测模型的缺陷,提出了一种基于径向基函数(Radial Basic Functions)神经网络的入侵检测系统模型。该模型既克服了传统的基于规则库的入侵检测系统所存在的管理问题,又克服了传统的系统仅能判断入侵行为是否异常,而不能识别入侵行为属于哪种类型的缺陷,从而使系统能够达到实时监测网络及主机状态,来防范不可预知性入侵。该模型具有良好的易用性和可扩展性,是一种开发安全管理系统的有效手段。 相似文献
7.
使用高阶累积量算法进行了盲自适应波束形成,计算了利用神经网络逼近波束形成的权矢量,通过Matlab仿真验证了该算法的有效性。 相似文献
8.
为了获得准确的破裂压力预测值,本文引入径向基函数(RBF)神经网络模型对煤层破裂压力进行解释。通过对收集的200余层资料进行了拟合和预测破裂压力,优选径向基函数网络模型,对其中150层资料进行拟合,得到拟合精度达到92.01%,同时利用训练的径向基函数网络模型,对剩余井层中的20层资料进行了预测,预测精度达到89.85%,解决了传统方法预测效果误差大的问题,该结果利用径向基函数网络模型预测煤层气井的破裂压力准确度高,可以推广应用。 相似文献
9.
采用径向基函数(RBF)神经网络方法进行能源消费量预测,建立了基于RBF神经网络的能源消费量预测模型。以我国1978~1997年的实际数据作为学习样本,对网络进行训练,拟合效果良好;以1998~2002年的实际数据检验网络,预测精度较高。并通过实例与BP网络进行比较,表明RBF网络预测模型优于BP网络预测模型。 相似文献
10.
发展了一种基于径向基函数的近似模型建立方法。首先采用试验设计方法对设计空间进行样本选择,采用数据分析方法对样本集进行聚类分类,得到径向基函数中的相关参数。对于近似模型权系数采用能够适应大规模并行计算并且能够在全局解空间的多个区域内寻优的遗传算法进行求解,而不是采用最小二乘法通过线性方程的求解获得。最后通过对一维非线性和多维高阶非线性函数的逼近测试,以及对近似模型的拟合函数与原函数之间的误差分析,表明本文提出的基于径向基函数的近似模型方法具有良好的拟合与预测精度。 相似文献
11.
结合改进的免疫算法和最小二乘法,提出了一种设计径向基函数(RBF)网络的两级学习方法。该方法利用免疫算法确定RBF网络隐层的非线性参数,能够有效克服进化算法的未成熟收敛现象。改进的免疫算法针对RBF网络的特点,采用基于矢量距离的亲和度计算方法,克服了原有基于信息熵计算方法存在的计算复杂、参数难于确定的缺陷。将这种方法设计的RBF网络用于Mackey-Glass混沌序列预测的仿真实验证明了该方法的有效性。 相似文献
12.
基于径向基函数网络的混沌时间序列分析 总被引:9,自引:0,他引:9
给出了基于径向基函数网络的混沌时间序列预测的方法。利用非线性自回归移动平均(NARMAX)模型对非线性时间序列进行辨识并给出基于动态径向基函数(RBF)网络的辨识算法。将这一方法应用到Henon映射的混沌时间序列的嵌入维估计及我国股票市场的混沌现象的实证研究,得到理想的结果。文章最后指出了进一步的研究方向。 相似文献
13.
基于OLS的径向基函数神经网络实现多种数字信号调制方式自动识别 总被引:1,自引:2,他引:1
基于决策论的信号调制样式自动识别方法具有简单易行、适合在线分析的优点,针对一些参数的计算进行了改进,并提出了基于该方法,利用正交最小二乘法(OLS)的径向基函数(RBF)神经网络,实现数字信号调制样式自动识别的方法.提高了该方法的识别能力,对信噪比(SNR)为6~30 dB的测试信号识别得到了较好的结果.识别的数字信号为2ASK、4ASK、2PSK、4PSK(QPSK)、2FSK、4FSK与16QAM. 相似文献
14.
介绍了基于Levenberg-Marguardt(LM)算法的改进BP神经网络及其在热电偶特性建模中应用,针对其存在的问题,提出了一种基于径向基(RBF)神经网络建立热电偶特性零误差模型的方法,详细介绍了镍铬-镍硅热电偶特性0~1 370℃无差优化模型的建立过程并与BP神经网络热电偶模型进行了比较,结果表明提出的模型算法简单、精度高、稳定性好,易实现,优于BP网络,对其他传感器应用领域也有借鉴作用. 相似文献
15.
为了克服通用模型控制器要求过程一阶微分模型应该有显式解的局限性,提出了一种基于神经网络的通用模型控制方法,将非线性过程模型应用逆系统的方法在控制算法中直接嵌入过程模型,从而保证通用模型控制策略的可实现性。其参考轨迹是一条典型的二阶曲线,由于径向基函数网络具有许多优点,该控制策略中的神经网络为径向基函数网络。该控制器参数具有明显的物理意义,参数整定方便。仿真实验验证了该控制策略的有效性。 相似文献
16.
17.
基于径向基函数神经网络车辆跟驰模型 总被引:5,自引:1,他引:5
针对由于驾驶行为的不确定性,难以建立精确的车辆跟驰模型的问题,应用径向基函数神经网络建立了跟驰模型,改进了基于最近邻聚类的网络学习算法,并利用跟驰数据对模型进行了验证.结果表明,该网络模型与多层前馈网络模型相比,结构简单,训练时间短,精度高,适宜在线进行实时预测. 相似文献