首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
沥青氧化纤维制备活性炭纤维过程中孔隙结构的变化   总被引:3,自引:0,他引:3  
以通用级沥青氧化纤维为原料经水蒸气活化制得沥青基活性炭纤维(PACF), 讨论了工艺参数对PACF的比表面积、孔结构(孔容、孔径大小及分布)的影响. 结果表明, PACF的比表面积随着活化温度的提高(850~950 ℃)而增加, 同时, 孔径变大, 孔径分布变宽;在相同最终活化温度下(900 ℃), PACF的孔径及其分布随着水蒸气通入温度的不同而发生变化.  相似文献   

2.
PAN 活性炭纤维表面结构   总被引:8,自引:0,他引:8  
通过元素分析(EA)、X射线衍射(XRD)、X光电子能谱(XPS)、差热分析(DTA)等方法,证明不同比表面积的聚丙烯腈(PAN)活性炭纤维(ACF)具有不同的表面微结构。结果表明,高比表面积的ACF、与低比表面积的ACF相比,类石墨微晶尺寸小,边缘活泼C原子数目多,本体C原子质量分数大,N、H、O等杂原子质量分数小,羧基、酰胺基团的数量少,醚基数量多。  相似文献   

3.
磷酸盐活化法制备椰壳纤维基活性炭研究   总被引:3,自引:0,他引:3  
采用正交试验设计实验方案,以椰纤维为原料,经炭化、活化等处理,研究磷酸盐活化制备高比表面积活性炭的实验方案与工艺条件,得到比表面积高,孔隙发达,吸附效果优异的活性炭.考查了活化剂配比、活化温度、活化时间、升温速率等因素对活性炭吸附性能及产率的影响,得到最佳的活化方案与工艺条件.并在实验的基础上探讨了活性炭的活化机理.  相似文献   

4.
以石油沥青为主要原料并采用新颖的悬浮法制得沥青球后进行沥青球的空气氧化不熔化和碳化活化,最终得到沥青基球形活性炭(PSAC),借助扫描电子显微镜(SEM)和BET试,所制得的PSAC球形度好,粒径分布范围窄,是一种高性能的炭质吸附材料,探讨了空气氧化对沥青基球形活性炭球形度的影响以及炭化活化工艺中的影响因素,证明了沥青球粒径,活化温度,活化时间等因素对活化有较大影响,,其中活化温度是最主要的影响因素,已摸索出较好的活化工艺参数:活化温度为950℃,最佳活化时间为240min,CO2流量为150-180mL/min.  相似文献   

5.
沥青焦制备高比表面积活性炭的正交法研究   总被引:3,自引:0,他引:3  
用正交实验的方法系统研究了以沥青焦为原料,KOH为活化剂,通过化学活化法制得高比表面积活性炭,对制备高比表面积活性炭的条件进行了优化,并综合分析了各种因素对高比表面积活性炭吸附性能的影响。  相似文献   

6.
磷酸活化汉麻布活性炭纤维的孔结构   总被引:3,自引:0,他引:3  
以汉麻布为原料,采用磷酸活化法制备了汉麻布活性炭纤维,并利用低温氮气吸附和密度泛函理论(DFT)对样品的孔结构进行了分析。结果表明,随着活化温度的升高,磷酸活化的汉麻布活性炭纤维的BET比表面积和总孔容都呈现先增大后减小的变化趋势。不同方法计算得到的样品比表面积值呈相同的变化规律。样品的孔分布集中在2 nm以下的微孔范围内,既有极微孔又有超微孔,只有少量中孔,基本没有大孔。所有样品的孔径在微孔范围内都呈现多峰分布,孔径≤1 nm和1~2 nm的范围内分别都出现了2个峰值孔径。微孔孔容基本上随活化温度的升高而增加,而中孔孔容的数值则整体上变化不大。样品表面能量分布较宽,并呈现有多个不连续峰值的多峰分布,宽的孔径分布导致宽的表面能量分布和较多的能量峰值,并使吸附位的种类也随之增多。  相似文献   

7.
对黏胶基、沥青基和聚丙烯腈基活性炭纤维这3种典型的活性炭纤维进行不同温度的热处理,热处理温度范围700~2 800℃,通过氮气吸附法、X射线衍射、元素分析和电阻率测试等分析方法详细考察了温度对活性炭纤维的孔隙结构、微晶结构、元素组成和电导率的影响,并研究其在无机体系和有机体系下作为超级电容器电极材料时电化学性能的变化。研究结果表明:活性炭纤维在经过热处理后,比表面积随着热处理温度的升高先增大后减小,当温度高于1 200℃时,炭纤维层间距不断减小,微晶尺寸逐渐增大,石墨化度有所提高,电导率逐渐增大,电容性能在一定温度热处理后得到较大提升。  相似文献   

8.
氯化锌活化大麻布活性炭纤维的孔结构   总被引:1,自引:0,他引:1  
以大麻布为原料,氯化锌为活化剂,在不同活化温度下制备大麻布活性炭纤维样品。采用低温氮气吸附和密度函数理论(DFT)等对样品的孔结构和表面能量分布等表面织构特征进行了研究。结果表明,样品BET比表面积随活化温度的升高呈现先增大后减小的变化趋势,800℃时达到最大值915 m2/g;样品是典型的微孔材料,孔分布集中于2 nm以下的微孔范围内,只有极少部分的中孔,基本没有大孔;样品的表面能量分布较宽,为不均匀性表面;随活化温度的升高,样品碘吸附量呈先增大后减小的变化趋势,与微孔孔容、总孔容以及由BET比表面积的变化趋势一致。  相似文献   

9.
以软化点为85 ℃、0.30~0.45 mm的中温煤沥青颗粒为原料,采用悬浮法制备沥青球,采用混合氧化法(HNO3液相氧化和O2气相氧化)对沥青球进行不熔化处理. 不熔化沥青球经过炭化、CO2活化法制备沥青基球形活性炭. 采用SEM、TG/DTG、FT-IR对沥青球进行表征. 结果表明,采用悬浮法制备的沥青球表面光滑、平均球形度0.981、粒径分布集中,0.30~0.45 mm的沥青球质量占比超93%. 活化温度940 ℃,保温6 h制得的沥青基球形活性炭的BET比表面积为1 545 m2/g、微孔率为75.30%.  相似文献   

10.
文章系统阐述了活性炭纤维(ACF)表面功能的设计和控制方法,介绍了ACF的比表面积、孔径分布、表面化学结构与吸附对象的关系;从ACF表面物理、化学结构的可设计化入手,全面阐述了ACF物理结构的设计和控制方法及表面化学的改性方法;并介绍了其应用效果。  相似文献   

11.
活性炭纤维纸的制备、结构及性能研究   总被引:2,自引:0,他引:2  
采用湿法造纸工艺制备活性炭纤维纸(ACFP),探讨了分散剂、活性炭纤维与纸浆纤维配比对活性炭纤维纸的透气度、抗张强度、比表面积和微孔体积的影响。结果表明,分散剂可增加ACFP的抗张强度而对透气度影响较小,随活性炭纤维含量的增加,ACFP的透气度增加而抗张强度下降, ACFP具有与活性炭纤维类似的孔径大小和孔径分布, 二者的氮气吸附等温线均为I型等温线,吸附机理均为微孔填充,ACFP的形态结构为无序随机排列。  相似文献   

12.
介绍了用粘胶纤维毡在真空设备中经碳化活化工艺制备活性碳纤维 (ACF)毡的研究工作。论述了制备粘胶基 ACF毡适用的预处理介质、碳化活化原理以及工艺参数的确定 ;给出了 X射线衍射对ACF毡晶体结构分析结果。工艺试验表明 ,用真空设备制备高性能ACF切实可行。  相似文献   

13.
为提升沥青基碳纤维的力学性能,采用自制的激光超高温石墨化装置对中间相沥青基碳纤维进行石墨化处理。通过改变实验过程中的激光功率、牵伸力及碳纤维直径等3个因素制备了多组样品,研究了沥青基碳纤维拉伸强度随温度的变化规律,并分析了石墨化过程中牵伸力及碳纤维直径对其力学性能的影响。结果表明:沥青基碳纤维石墨化能承受的最大激光功率为360 W,对应的温度约为3 050℃,在此条件下处理得到的碳纤维拉伸强度由1.0 GPa提升至2.5 GPa;在碳纤维的承受范围内,其力学性能随着温度、牵伸力的增加而提高;直径较小的碳纤维力学性能提升更大。  相似文献   

14.
粘胶基活性碳纤维的微观结构   总被引:1,自引:0,他引:1  
分析了在真空设备中经碳化活化工艺制备的粘胶基活性碳纤维 (ACF)的微观结构。X-射线衍射 (XRD)分析了 ACF的晶体结构 ,结果证实所制备的 ACF为类石墨微晶结构 ,得到了微晶结构参数 ;借助扫描电镜 (SEM)观察了粘胶纤维、ACF的横截面和纵向外观形貌 ;氮吸附法 (BET法 )研究了 ACF的孔结构 ,测定出制备的 ACF比表面积为 1717m2 / g,孔径分布为 92 %的孔径 <2 nm。  相似文献   

15.
具有较大比表面积的且以微孔孔隙居多的活性炭对气体小分子具有较好的吸附性能,以椰壳活性炭为原料、KOH/NaOH为活化扩孔剂,考察了温度、时间以及KOH与NaOH的质量比对活性炭孔隙结构的影响,使用N2在77 K下对产品活性炭进行表征测试。表征结果表明,当m(KHO)∶m(NaOH)为4∶1、溶液浓度为50%时,活性炭在600℃下活化4 h所得的活性炭产品平均孔径最大。对比HK模型和DFT模型对微孔活性炭孔径分布的分析结果,表明DFT模型更符合实际情况。经过孔结构改性的活性炭对CH4与CO2吸附能力均有提高。  相似文献   

16.
活性炭吸附二氧化碳性能的研究   总被引:6,自引:0,他引:6  
采用常压流动吸附法研究了活性炭吸附剂在二氧化碳/氮气体系中对二氧化碳的动态吸附性能,比较了其吸附量、吸附穿透曲线和吸附性能的差异,研究了活性炭的比表面积、孔径分布及表面官能团对其二氧化碳吸附性能的影响。结果表明,原料煤的性质影响活性炭对二氧化碳的吸附性能;二氧化碳的吸附量与吸附剂的比表面积、孔径分布有关,但孔径分布是主要的因素。吸附剂的孔径分布在0.5~1.7nm范围内时,有利于对二氧化碳的吸附;经多次循环吸脱附后,吸附剂对二氧化碳的吸附量略有减小并达到恒定值,孔容小和孔径分布窄的吸附剂的吸附量衰减较快。  相似文献   

17.
以煤焦油沥青为原料,使用KCNS溶液活化处理,选择适宜的工艺条件,制备出优质的活性炭.讨论了煤焦油沥青热处理温度、中间相沥青的粒径、KCNS溶液的浓度、KCNS溶液与中间相沥青的液固比、炭化温度、炭化时间、活化温度、活化时间等主要因素对活性炭性能的影响.结果表明,在适宜的工艺条件下制备的活性炭,强度为90.4%,比表面积为2601.0m2/g,吸碘值为2216.7mg/g,吸苯值为1099.1mg/g,吸亚甲基蓝值为397.5mg/g,产品性能优良.图1,表8,参7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号