首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
dng1 is a Dictyostelium homologue of the mammalian tumor suppressor ING gene. DNG1 protein localizes in the nucleus, and has a highly conserved PHD finger domain found in chromatin-remodeling proteins. Both dng1 disruption and overexpression impaired cell proliferation. In dng1-null cells, the progression of differentiation was delayed in a cell-density-dependent manner, and many tiny aggregates were formed. Exogenously applied cAMP pulses reversed the inhibitory effect caused by dng1 disruption on the aggregation during early development, but formation of tiny aggregates was not restored. dng1-overexpressing cells acquired the ability to undergo chemotaxis to cAMP earlier and exhibited enhanced differentiation. These phenotypes were found to be coupled with altered expressions of early genes such as cAMP receptor 1 (car1) and contact site A (csA). Furthermore, disordered histone modifications were demonstrated in dng1-null cells. These results suggest a regulatory role of dng1 in the transition of cells from growth to differentiation.Received 29 December 2004; received after revision 24 May 2005; accepted 26 May 2005  相似文献   

3.
4.
Biological functions of the ING family tumor suppressors   总被引:11,自引:0,他引:11  
  相似文献   

5.
Mitogenic signals stimulate cell division by activating cyclin/cyclin-dependent kinase (CDK) complexes. Their timely regulation ensures proper cell cycle progression. It is therefore not surprising that cyclin/CDK complexes are integrators of multiple signals from both the extracellular environment and intracellular cues. Important regulators of cyclin/CDKs are the CDK inhibitors that have attracted attention due to their association with disease. p27KIP1 is a CDK inhibitor that controls CDK activity throughout the cell cycle. As a CDK inhibitor, p27KIP1 has tumor suppressor activity. Besides CDKs, p27KIP1 regulates additional cellular processes, including cell motility, some of which seem to mediate oncogenic activities of p27KIP1. These activities of p27KIP1 are regulated through multiple phosphorylation sites, targeted by several signal transduction pathways. Understanding functions and regulation of p27KIP1 will be important to determine which isoform of p27KIP1 has anti- or pro-tumorigenic activities. Such knowledge might be of prognostic value and may offer novel therapeutic windows. Received 26 May 2008; accepted 17 June 2008  相似文献   

6.
No Abstract. .Received 4 March 2005; received after revision 7 April 2005; accepted 26 April 2005  相似文献   

7.
Tumor microenvironment consists of tumor cells, stromal cells, extracellular matrix and a plethora of soluble components. The complex array of interactions between tumor cells and their surrounding tumor microenvironments contribute to the determination of the fate of tumor cells during tumorigenesis and metastasis. Matricellular protein periostin is generally absent in most adult tissues but is highly expressed in tumor microenvironments. Current evidence reveals that periostin plays a critical role in establishing and remodeling tumor microenvironments such as the metastatic niche, cancer stem cell niche, perivascular niche, pre-metastatic niche, fibrotic microenvironment and bone marrow microenvironment. Here, we summarize the current knowledge of the multifaceted role of periostin in the tumor microenvironments.  相似文献   

8.
Knudsons two-hit model of tumour suppressor genes supposes that two mutations are required to cause a tumour, one occurring in each of the two alleles of the gene. Many such cancer genes exhibiting biallelic disruption and truncating point mutations have been identified, revealing the success of the model. Despite changes in our concept of cancer genes, two inactivating point mutations are still considered the hallmark of tumour suppressor genes. Recently, however, more and more reports describe candidate tumour suppressors that do not conform to this standard definition, including haploinsufficient genes requiring inactivation of only one allele, and genes inactivated not by mutation but rather epigenetic hypermethylation. This review describes some of these exceptions and proposes a revised tumour suppressor gene definition to facilitate the identification of this new generation of tumour suppressor loci.Received 21 January 2003; received after revision 26 March 2003; accepted 1 April 2003  相似文献   

9.
10.
As a member of tumor suppressor p53 family, p63, a gene encoding versatile protein variant, has been documented to correlate with cancer formation and progression, though it is rarely mutated in cancer patients. However, it has long been controversial on whether p63 is an oncogene or a tumor suppressor. Here, we comprehensively reviewed reports on roles of p63 in development, tumorigenesis and tumor progression. According to data from molecular cell biology, genetic models and clinic research, we conclude that p63 may act as either an oncogene or a tumor suppressor gene in different scenarios: TA isoforms of p63 gene are generally tumor-suppressive through repressing cell proliferation, survival and metastasis; ΔN isoforms, however, may initiate tumorigenesis via promoting cell proliferation and survival, but inhibit tumor metastasis and progression; effects of p63 on tumor formation and progression depend on the context of the whole p53 family, and either amplification or loss of p63 gene locus can break the balance to cause tumorigenesis.  相似文献   

11.
12.
13.
14.
Protein 4.1B/DAL-1 is a membrane skeletal protein that belongs to the protein 4.1 family. Protein 4.1B/DAL-1 is localized to sites of cell–cell contact and functions as an adapter protein, linking the plasma membrane to the cytoskeleton or associated cytoplasmic signaling effectors and facilitating their activities in various pathways. Protein 4.1B/DAL-1 is involved in various cytoskeleton-associated processes, such as cell motility and adhesion. Moreover, protein 4.1B/DAL-1 also plays a regulatory role in cell growth, differentiation, and the establishment of epithelial-like cell structures. Protein 4.1B/DAL-1 is normally expressed in multiple human tissues, but loss of its expression or prominent down-regulation of its expression is frequently observed in corresponding tumor tissues and tumor cell lines, suggesting that protein 4.1B/DAL-1 is involved in the molecular pathogenesis of these tumors and acts as a potential tumor suppressor. This review will focus on the structure of protein 4.1B/DAL-1, 4.1B/DAL-1-interacting molecules, 4.1B/DAL-1 inactivation and tumor progression, and anti-tumor activity of the 4.1B/DAL-1.  相似文献   

15.
16.
17.
18.
Apoptosis is a morphologically distinct form of cell death. It is executed and regulated by several groups of proteins. Bcl-2 family proteins are the main regulators of the apoptotic process acting either to inhibit or promote it. More than 20 members of the family have been identified so far and most have two or more isoforms. Alternative splicing is one of the major mechanisms providing proteomic complexity and functional diversification of the Bcl-2 family proteins. Pro- and anti-apoptotic Bcl-2 family members should function in harmony for the regulation of the apoptosis machinery, and their relative levels are critical for cell fate. Any mechanism breaking down this harmony by changing the relative levels of these antagonistic proteins could contribute to many diseases, including cancer and neurodegenerative disorders. Recent studies have shown that manipulation of the alternative splicing mechanisms could provide an opportunity to restore the proper balance of these regulator proteins. This review summarises current knowledge on the alternative splicing products of Bcl-2-related genes and modulation of splicing mechanisms as a potential therapeutic approach.Received 5 January 2004; received after revision 31 March 2004; accepted 6 April 2004  相似文献   

19.
Neutrophils are essential effector cells in the host defense against invading pathogens. Recently, novel neutrophil functions have emerged in addition to their classical anti-microbial role. One of these functions is the suppression of T cell responses. In this respect, neutrophils share similarities with granulocytic myeloid-derived suppressor cells (G-MDSCs). In this review, we will discuss the similarities and differences between neutrophils and G-MDSCs. Various types of G-MDSCs have been described, ranging from immature to mature cells shaping the immune response by different immune suppressive mechanisms. However, all types of G-MDSCs share distinct features of neutrophils, such as surface markers and morphology. We propose that G-MDSCs are heterogeneous and represent novel phenotypes of neutrophils, capable of suppressing the immune response. In this review, we will attempt to clarify the differences and similarities between neutrophils and G-MDSCs and attempt to facilitate further research.  相似文献   

20.
The combinatorial expression of Hox genes is an evolutionarily ancient program underlying body axis patterning in all Bilateria. In the head, the neural crest (NC)––a vertebrate innovation that contributes to evolutionarily novel skeletal and neural features––develops as a structure free of Hox-gene expression. The activation of Hoxa2 in the Hox-free facial NC (FNC) leads to severe craniofacial and brain defects. Here, we show that this condition unveils the requirement of three Six genes, Six1, Six2, and Six4, for brain development and morphogenesis of the maxillo-mandibular and nasofrontal skeleton. Inactivation of each of these Six genes in FNC generates diverse brain defects, ranging from plexus agenesis to mild or severe holoprosencephaly, and entails facial hypoplasia or truncation of the craniofacial skeleton. The triple silencing of these genes reveals their complementary role in face and brain morphogenesis. Furthermore, we show that the perturbation of the intrinsic genetic FNC program, by either Hoxa2 expression or Six gene inactivation, affects Bmp signaling through the downregulation of Bmp antagonists in the FNC cells. When upregulated in the FNC, Bmp antagonists suppress the adverse skeletal and cerebral effects of Hoxa2 expression. These results demonstrate that the combinatorial expression of Six1, Six2, and Six4 is required for the molecular programs governing craniofacial and cerebral development. These genes are crucial for the signaling system of FNC origin, which regulates normal growth and patterning of the cephalic neuroepithelium. Our results strongly suggest that several congenital craniofacial and cerebral malformations could be attributed to Six genes’ misregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号