首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设Xn={1,2,…,n},并赋予自然序.POPn是Xn上的方向保序部分变换半群.对任意2≤r≤n-1,研究了半群POP(n,r)={α∈POPn:|im(α)|≤r}的极大正则子半群的结构,并利用Miller-Clifford定理,证明了半群POP(n,r)的极大正则子半群有且仅有一类,即Mα=POP(n,r-1)∪(Jr\Rα),α∈Jr,Jr={α∈POPn:|im(α)|=r},Rα表示α所在R-类.  相似文献   

2.
设X是一实Banach 空间,k■X 是锥。记k_r={x∈k:■r.  相似文献   

3.
设α=(mn), β=(st)∈R2×1. α<=>βm n=s t,则"~"是平面上向量间的一个等价关系.令:S={A∈R2×2|(A)α,β∈R2×1,α~β(=)Aα~Aβ}.显然在矩阵乘法运算下S构成一个半群,讨论了S的格林关系.  相似文献   

4.
设POPn和PORn分别是Xn上的方向保序部分变换半群和方向保序或反方向保序部分变换半群.对任意2≤r≤n-1,研究了半群I(n,r)={α∈PORn:|im(α)|≤r}的极大正则子半群的结构.利用Miller-Clifford定理,证明了半群I(n,r)的极大正则子半群有且仅有两类:(ⅰ)Mα=I(n,r-1)∪(Jr\Rα),α∈Jr;(ⅱ)Nr=I(n,r-1)∪JPOPnr.其中:Jr={α∈PORn:|im(α)|=r},JPOPnr={α∈PORn:|im(α)|=r},Rα表示α所在R-类.  相似文献   

5.
运用Brouwer度理论发展了一维离散p-Laplacian边值问题△(w(k)φp(△u(k-1)))+f(k,u(k))=0,k∈[1,T]Z,u(0)=0,u(T+1)={0的上下解方法,并获得了其多个解的存在性,其中,[1,T]-2Z:={1,2,…,T-1,T},φp(s)=|s|p s,p1,f:[1,T]Z×R→R连续,R=(-∞,+∞),w(k):[1,T+1]Z→(0,+∞).  相似文献   

6.
给定A∈Rm×n,B∈Rm×p,D∈Rm×m,设S1={(X,Y,Z)∈SRn×n×SRp×p×Rn×p|AXAT BYBT AZBT=D}, S2={(X,Z)∈SRn×n×Rn×p|AXAT AZBT BZTAT=D},求(X,Y,Z)∈S1使得‖X‖2 ‖Y‖2 ‖Z‖2=min及(X,Z)∈S2使得‖2‖2 ‖2‖2=min.本文运用矩阵对(A,B)的广义奇异值分解给出了集合S1,S2非空的充分必要条件及X,Y,Z的显式表示.  相似文献   

7.
引理1 设X_(s+1)={e~1,…,e~s,e~1+…+e~s},ξ∈X_(s+1),如果对于所有的i∈Z~s,都有C_(i+ξ)≥C_i,则箱样条曲面S(x)=■C_iΦ_i(x|X_(s+1))在ξ方向上是单调非降的。其中Φ_i(x|X_(s+1))是箱样条函数。定理1 设X_n={x~1,…,x~n}■Z~s■{0},对任意1≤i≤n,〈X_n■{x_i}〉=R~s,令I_k={j|Φ_j(x|X_n■{x~i})■0,x∈suppΦ_k(x|X_n■{x~i})},M_k=■(C_(j+x~i)+C_j)则箱样条曲面S(x)=∑C_jΦ_j(x|X_n),x∈R~S(1)在x~i方向上单调非降的必要条件是  相似文献   

8.
设X,Y是复的Banach空间,在一个上三角算子矩阵Mc=A C0 B∈B(XY)中,A∈B(X),B∈B(Y)是事先给定的,对于任意的C∈B(Y,X),Mc的左(右)Browder谱:lσb(Mc)={λ∈C:Mc)-λB (XY)},B (XY)={T∈Φ (XY):asc(T)<∞},(rσb(Mc)={λ∈C:Mc)-λ■B-(XY)},B-(XY)={T∈Φ-(XY):des(T)<∞}).文中得到lσb(Mc)(rσb(Mc))与lσb(A)∪lσb(B)|rσb(A)∪rσb(B))之间存在有趣的填洞现象,即σ*(A)∪σ*(B)=σ*(Mc)∪W.其中,W是σ*(Mc)的某些洞的并σ*∈{lσb,rσb},并找出洞W的具体位置.  相似文献   

9.
Stieltjes 积分问世已经近一个世纪了.中给出了 S—可积的充要条件,笔者在中给出了 S—可积的另一个充要条件.现在我们要用实数集值函数的上、下极限与极限之间的关系来揭示这些 S—可积的充要条件的由来,并利用中给出的 S—可积的充要条件推出一新的结果.为叙述简单,引入下列记号:R={x|x 为实数},P(R)={E|E(?)R};W(f,E)==supf(E)-inff(E),W(f,t,E)(?)(f,(t-δ,t+δ)∩E);J={n|n 为自然数},J_n={m|m∈J,m≤n},n∈J,J_0表示空集.  相似文献   

10.
设λ1,λ2,...,λn(可以相同)为实矩阵A的所有特征值,记为σ(A)=(λ1,λ2,...,λn).n阶符号模式矩阵S=(sij)是指元素取自{ ,-,0}的矩阵,S的定性矩阵类是指集合Q(S)={A=(aij)∈M\{n\}(R):对所有的i和j,sign(aij)=sij},记σ(S)={σ(A):A∈Q(S)}.设S为n阶符号模式矩阵,λ1,λ2,…,λn为n个任意复数,若λ1,λ2,…,λn中的虚数都与其共轭复数成对出现时,便存在A∈Q(S),使得σ(A)=(λ1,λ2,…,λn),则称S为谱任意模式.在本文中,我们得到两个谱任意模式.  相似文献   

11.
设X是复B-空间,B(X)是X上有界线性算子全体,C是复平面,F是C的一切闭子集类,我们引入一类算子,并研究它的谱理论,算子T∈B(X)称为(AC)算子,若T有性质(A)与(C),我们证明:(1)T∈B(X)是(AC)算子当且仅当对F到X的闭子空间类的同态X(·)满足下述条件:(ⅰ)(F_1∩F_2)=X(F_1)∩X(F_2);(ⅱ)X(φ)={0},X(C)=X;(ⅲ)TX(F)X(F);(ⅳ)σ(T|X(F))F;(ⅴ)对x∈X若存在解析函数x(λ):CF→X,使(λI-T)x(λ)=x,则x(λ)∈X(F),λ∈CF,(2)设T∈B(X)是(AC)算子,则对任何F∈F,有:(ⅰ)若X_T(F)≠{0},则F∩σ(T)≠φ;(ⅱ)若X_T(F)={0},则F∩σ_p(T)=φ,(3)设T∈B(X),σ(T)位于光滑Jordan曲线Γ上,又对每个z∈Γ,存在Γ邻域V上非零解析函数f(z),使 ‖f(z)R(λ,T)‖≤M_z,λ≠z,λ∈V,M_z>0,则T是(AC)算子。  相似文献   

12.
X是Banach空间,KX是一个锥,intK≠φ;K_R={x∈K:0≤ⅡxⅡ相似文献   

13.
设S_n和T_n分别是X_n={1, 2,…,n}上的对称群和全变换半群.对1≤r≤n,令T(n,r)={α∈T_n:|im(α)|≤r},则T(n,r)是全变换半群T_n的双边理想.对1≤r≤n-1,考虑半群T_(n,r)=T(n,r)∪S_n,得到了半群T_(n,r)的极大子半群S有且仅有两类:S=T_(n,r)\[τ_i](1≤i≤p=p_r(n))和S=T(n,r)∪G,其中G是群S_n的极大子半群.同时,证明了半群T_(n,r)的极大子半群和极大正则子半群是一致的.所得结果推广了已有的结果.  相似文献   

14.
一个变分双曲型组的解   总被引:3,自引:0,他引:3  
本文研究带Dirichlet条件的边界值问题{□u+△G(u)=f(t,x),(t,x)∈Ω≡(0,π)×(0,π), (*)u(t,x)=0, (t,x)∈aΩ,的解的存在性,这里口是波算子a2/at2-a2/ax2,GRn→R是一连续函数.设σ(口)={k2-m2,k,m∈N}记波算子口的特征值的集合,(a2G(u)/auiaui)记u∈Rn.点处的Hessian阵.假定σ((a2G(u)/auiauj))∩σ(□)=φ.再设E={u|u(t,x)=∑k,mψkm(t,x)Ckm, Ckm ∈ Rn k,m ∈ N,∑k,m(k2+m2+1)|Ckm|2 <+∞},Y={y|y(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 - m2 <γi(u),μikm ∈ R,k,m ∈N,∑k,m(k2+m2+ 1)|μikm|2<+∞,i= 1,2,……,n} Z={z|z(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 -m2>γi(u),μikm ∈ R,k,m ∈ N ,∑k,m(k2 + m2+1)|μikm|2 <+ ∞,i = 1,2,……,n}.对Y中的k2-m2记ξ(‖u‖0) =min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{γi(v)-(k2- m2) > 0},对Z中的k2-m2,记η(‖u‖0)=min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{k2-m2-γi(v)>0},这里‖·‖0记(L2(Ω))n.假设∫+∞1ξ(s)ds=∞, ∫+∞1η(s)ds=∞.在上述条件下,我们使用R.F.Manasevich的最大值最小值定理证明问题(*)的弱解u0∈(H1(Ω))n的存在性和唯一性.  相似文献   

15.
该文的目的就是要计算正规三角矩阵环T=(RO mS)上的高阶导子.设R,S为带有单位元的环且M为(R,S)双模.如果将此高阶导子记为d(r,m,s),则它就有如下形式:dn(r,m,s)=(δnR(r),τn(m),δnS(s))+n-1∑i=0[(δiR(r),τi(m),δiS(s)),mn_iE12].经过计算,就可以得到δR={δnR}n∈N与δs={δnS}n∈N分别为R和S上的高阶导子,并且映射集τ={τn}n∈N与(δR,δS)相关.  相似文献   

16.
设A和B是拟相似算子,△是Wolf本性谱σ_c(B)的任一个连通成分。本文证明了△∩σ_■(A)∩σ_■(B)≠φ及△∩(σ_■(A)∩σ_■(B))≠φ。并证明了若△σ_K(B)的一个连通成分,则△∩(σ_F(A)∩σ_F(B))≠φ等价于△∩(σ_■(A)∩σ_■(B))≠φ,进而给出△∩σ_■(A)∩σ_■(B)≠φ的充要条件,其中σ_K(T)=σ_■(T)∩σ_■(T),σ_■(T)=σ_K(T)\(P'_∞(T)~0∪P'_(∞∞)(T)~0),P'_∞(T)={λ∈C:v(T-λ)-μ(T-λ)=±∞},P_(∞∞)~'(T)={λ∈C:v(T-λ)=μ(T-λ)=∞}。  相似文献   

17.
整数集合的非空有限子集S的和图是(S,E),E={vvu≠v,u+v∈S},图G的和数σ(G)=min{m≥0存在(S,E)≌GUmK1}.证明σ(Kn,n-E(,nK2))=2n-3(n≥5).  相似文献   

18.
一个变换半群的同余(英文)   总被引:1,自引:1,他引:0  
设X是一个集合,|X|>3,TX为集合X上的全变换半群.设E为X上的一个等价关系,TE(X)={f∈TX:(x,y)∈E■(f(x),f(y))∈E}为由等价关系E决定的TX的一个子半群.记T2(X)={f∈TE(X):|f(X)|≤2}∪{id},这里id表示X上的恒等映射,则T2(X)是TE(X)的一个子半群.另外还描述了半群T2(X)上的几个同余.  相似文献   

19.
关于K_D(n,r)的极大逆子半群   总被引:1,自引:1,他引:0  
设Xn={1,2,3,…,n}(n≥3)并赋予自然序,DOIn为Xn上的一切保序或保反序严格部分一一变换半群.设2≤r≤n-1,刻划了DOIn的理想KD(n,r)={α∈DOIn:|imα|≤r}(n≥3)的极大逆子半群的结构.  相似文献   

20.
设H为实Hilbert空间,在H上考虑具有公共不动点的非扩张半群f={T(S):sE≥0),具有常数0<α<1的压缩映象f,和具有系数γ>0的强正线性有界算了A.设0<γ<γ/α,文章证明了由下列产生的序列{xn},强收敛于f={T(s):sE≥0}的某一公共不动点x3∈F(T),且x3是下列变分不等式的唯一解.〈(γf-A)x3,z-x3〉F0,对任意的z∈F(T)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号