首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
利用叉排20 mm玻璃球床、折射率匹配技术、PIV技术截取流场中心图进行实验。用Tecplot软件得出Re=4.7至Re=857.8的流场、流线和等涡量线图。根据流场、流线及等涡量线的密集程度判断:流场在Re=4.7时,流动缓慢,从Re=23.3至Re=128.4,流动强度递增,形成四边形涡波区域,Re=128.4至Re=285.9流动逐渐增强;Re=285.9至Re=857.8,流动稳定;流线在Re=4.7至Re=81.7时,流线流动缓慢递增,在Re=128.4至Re=245.1,流线流动逐渐增强,形成海螺状图形,Re=326.8以后流动稳定;本实验结果对一般流动流态和多孔介质内流态演变研究都有促进作用,为流动区域划分研究起了重要参考作用。  相似文献   

2.
基于对磁化中子星磁层中极相对论电子辐射机制和辐射输运性质的讨论,指出被观测到的硬γ射线可能来自于磁化中子星的逃逸同步曲率辐射光子.逃逸硬γ射线光子最有可能产生于光速柱面附近的一个区域.  相似文献   

3.
为解释强度不均匀焊接接头最软区的强度及宽度与其承载能力的关系,用有限元对这类接头的单轴拉伸试样上应力分布及变形进行分析,当外加应力超过最软区的屈服应力时,在最软区及其邻近区域出现三轴应力状态;在有屈服应力差别的区域交界处Mises等效应力发生阶跃变化,其变化幅度与交界面两侧材料的屈服应力差值有关,随外加载荷的增加而增大.最软区Mises等效应力的降低量和与之相邻区域的增加量在试样长度上的积分相等.当Mises等效应力达到接头上最软区的抗拉强度时,在该处发生颈缩;随最软区的宽度减小或屈服应力增加,发生颈缩所需的外加应力增加;当最软区相对厚度小于0.2或相对屈服应力大于0.9时,在最软区已无明显颈缩.  相似文献   

4.
采用流体力学计算软件ANSYS FLUENT V16.1中的Eulerian-Eulerian多相流模型和剪切应力输运(SST)k-ω湍流模型,对循环射流混合槽内油-水两相流的动力学特性进行研究,分析不同雷诺数Re和不同相含率对多孔射流中心线速度自相似性、涡量和剪切速率的影响。研究发现:在不同Re及分散相相含率条件下,射流方向上连续相水的流动状态满足自相似性;Re=6 346、9 519和12 692时无量纲高度z/H=0.9处的涡量与Re=3 173时相比分别增大118.3%、253.7%和373.4%;轴向、径向和周向位置处涡量等值线图揭示高涡量区域主要集中在射流孔附近,射流中心线两侧存在反向对涡,射流中心线附近涡的相对强度与中心主体混合区域相比高2个数量级;与涡量及Q准则相比,第三代涡判别法Liutex对流场中大尺度涡结构的识别基本相同,对主体混合区域细小涡结构的识别相对更加准确;剪切速率随周向位置的增大呈现先增后减的趋势,在θ=12°处随着Re从3 173增加到12 692,平均剪切速率增大86.2%~257.7%。  相似文献   

5.
给出了恒星形成区L1641S的H波段的偏振成像和KS波段的近红外成像的结果. 反射星云Re50和Re50N分别坐落在该区域的南北. 两个星云的偏振图像均呈现出高偏振度和中心对称的特点, 表明星云内的发射主要以尘埃的单次散射为主, 且尘埃的尺寸较小. Re50N星云中存在两个红外点源, 其中IRS1是两个星云的红外照亮源, 也是该区域CO外流的驱动源, 而点源IRS2可能提供了星云光学波段发射所需的大量光子. L1641S的外流结构符合表面散射模型, 外流的倾角大约为30°. 通过偏振弧结构, 我们进一步证认了Re50N星云的双极型结构.  相似文献   

6.
采用人工增强UV-B辐射的方法,研究了蚕豆幼苗生长及叶绿素荧光特性对不同强度UV-B辐射的响应.结果表明:不同强度UV-B辐射使幼苗植株矮化达50%以上,叶面积减小,干物质量减少23.3%~61.49%;可溶性糖及可溶性蛋白含量均显著降低;叶绿素含量下降,其中叶绿素a降低幅度比叶绿素b大;0.25W/m2的UV-B辐射使蚕豆幼苗叶片的Fv/Fm、Fv/F0、φPSⅡ、qP等荧光参数值显著下降.根据结果推测,增加不同强度UV-B辐射首先导致幼苗叶绿素含量减少,可溶性蛋白含量减少,进而降低PSⅡ反应中心活性,最终导致光合作用能力下降,减少了干物质的合成和积累.在本试验强度范围内,辐射强度为0.25W/m2时,其抑制作用最显著.幼苗植株的矮化及叶面积的减小是植物对增强UV-B辐射的一种适应方式.  相似文献   

7.
采用计算流体力学方法对化学反应器内的Taylor涡胞结构进行了数值模拟,研究了在不同雷诺数Re条件下Taylor涡胞的结构特点及其生长方式受Re的影响规律.研究结果表明,随着Re的增加,Taylor涡胞先从上下两端部产生,并且底部固壁端Taylor涡胞的生成总要先于顶部自由面端部,随后Taylor涡胞由两端逐步向中心生长,直至系统的Re大于临界Re后,整个轴向间隙内均充满Taylor涡胞;轴向Taylor涡胞的强度并不一致,下端部固壁附近Taylor涡胞强于顶部自由面附近的Taylor涡胞,而中心位置的涡胞强度最弱.  相似文献   

8.
强辐射环境下数码成像设备由于受到高能粒子射线的影响,采集的视频或图像信噪比非常低,严重影响了其在辐射环境下的应用.为了去除视频或图像中的噪声,减少辐射粒子对成像设备的影响,提出了一种基于修复技术的新型强辐射图像去噪技术.首先在分析强辐射环境下成像设备受干扰的机理基础上检测图像的强干扰噪声;然后将图像噪声区域看成待修复区域,利用图像修复技术进行噪声消除;最后利用基于非下采样轮廓波变换的去噪方法对修复后的图像进行后处理.实验结果及分析表明提出的方法算法效率高、降噪效果显著,能够很好地去除强度大、分布密集的噪声,有效提高了数码成像设备在强辐射环境下的工作性能.  相似文献   

9.
标度律是研究湍流统计和湍流级串的重要工具,应用PIV系统的分辨率较高和帧率较高的特点,对在动量损失厚度雷诺数Reθ=2 694时,实验区域的脉动速度数值进行测量,利用统计学和小波分析的方法对SL标度律的间歇参数和最奇异标度指数进行拟合分析.结果显示:SL标度律的间歇参数并不是一个固定的数值,而是和尺度的大小及壁面位置有关;SL标度律的另一个参数最奇异标度指数是随着壁面距离和尺度的增大趋于稳定,在大尺度上与壁面的距离无关.  相似文献   

10.
在不同的pH条件下,利用单独超声辐射、单独臭氧氧化以及超声臭氧联合技术处理次甲基蓝废水,探讨了在不同初始pH值(3,6.4,10)时,超声辐射对臭氧的不同强化作用.结果表明,单独超声辐射对次甲基蓝废水脱色无明显效果,但它与臭氧氧化结合可极大地提高臭氧氧化次甲基蓝的能力,且增强因子由大到小顺序为:pH=3(Re=16.1%)pH=6.4(Re=4.0%)pH=10(Re=0.84%).  相似文献   

11.
The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.  相似文献   

12.
Baker DN  Kanekal SG  Li X  Monk SP  Goldstein J  Burch JL 《Nature》2004,432(7019):878-881
The Earth's radiation belts--also known as the Van Allen belts--contain high-energy electrons trapped on magnetic field lines. The centre of the outer belt is usually 20,000-25,000 km from Earth. The region between the belts is normally devoid of particles, and is accordingly favoured as a location for spacecraft operation because of the benign environment. Here we report that the outer Van Allen belt was compressed dramatically by a solar storm known as the 'Hallowe'en storm' of 2003. From 1 to 10 November, the outer belt had its centre only approximately 10,000 km from Earth's equatorial surface, and the plasmasphere was similarly displaced inwards. The region between the belts became the location of high particle radiation intensity. This remarkable deformation of the entire magnetosphere implies surprisingly powerful acceleration and loss processes deep within the magnetosphere.  相似文献   

13.
Wave acceleration of electrons in the Van Allen radiation belts   总被引:1,自引:0,他引:1  
The Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.  相似文献   

14.
Establishing the mechanisms by which the solar wind enters Earth's magnetosphere is one of the biggest goals of magnetospheric physics, as it forms the basis of space weather phenomena such as magnetic storms and aurorae. It is generally believed that magnetic reconnection is the dominant process, especially during southward solar-wind magnetic field conditions when the solar-wind and geomagnetic fields are antiparallel at the low-latitude magnetopause. But the plasma content in the outer magnetosphere increases during northward solar-wind magnetic field conditions, contrary to expectation if reconnection is dominant. Here we show that during northward solar-wind magnetic field conditions-in the absence of active reconnection at low latitudes-there is a solar-wind transport mechanism associated with the nonlinear phase of the Kelvin-Helmholtz instability. This can supply plasma sources for various space weather phenomena.  相似文献   

15.
Turbulence in fluids and plasmas is a ubiquitous phenomenon driven by a variety of sources-currents, sheared flows, gradients in density and temperature, and so on. Turbulence involves fluctuations of physical properties on many different scales, which interact nonlinearly to produce self-organized structures in the form of vortices. Vortex motion in fluids and magnetized plasmas is typically governed by nonlinear equations, examples of which include the Navier-Stokes equation, the Charney-Hasegawa-Mima equations and their numerous generalizations. These nonlinear equations admit solutions in the form of different types of vortices that are frequently observed in a variety of contexts: in atmospheres, in oceans and planetary systems, in the heliosphere, in the Earth's ionosphere and magnetosphere, and in laboratory plasma experiments. Here we report the discovery by the Cluster satellites of a distinct class of vortex motion-short-scale drift-kinetic Alfvén (DKA) vortices-in the Earth's magnetospheric cusp region. As is the case for the larger Kelvin-Helmholtz vortices observed previously, these dynamic structures should provide a channel for transporting plasma particles and energy through the magnetospheric boundary layers.  相似文献   

16.
Thorne RM  Ni B  Tao X  Horne RB  Meredith NP 《Nature》2010,467(7318):943-946
Earth's diffuse aurora occurs over a broad latitude range and is primarily caused by the precipitation of low-energy (0.1-30-keV) electrons originating in the central plasma sheet, which is the source region for hot electrons in the nightside outer magnetosphere. Although generally not visible, the diffuse auroral precipitation provides the main source of energy for the high-latitude nightside upper atmosphere, leading to enhanced ionization and chemical changes. Previous theoretical studies have indicated that two distinct classes of magnetospheric plasma wave, electrostatic electron cyclotron harmonic waves and whistler-mode chorus waves, could be responsible for the electron scattering that leads to diffuse auroral precipitation, but it has hitherto not been possible to determine which is the more important. Here we report an analysis of satellite wave data and Fokker-Planck diffusion calculations which reveals that scattering by chorus is the dominant cause of the most intense diffuse auroral precipitation. This resolves a long-standing controversy. Furthermore, scattering by chorus can remove most electrons as they drift around Earth's magnetosphere, leading to the development of observed pancake distributions, and can account for the global morphology of the diffuse aurora.  相似文献   

17.
Jupiter's aurora is the most powerful in the Solar System. It is powered largely by energy extracted from planetary rotation, although there seems also to be a contribution from the solar wind. This contrasts with Earth's aurora, which is generated through the interaction of the solar wind with the magnetosphere. The major features of Jupiter's aurora (based on far-ultraviolet, near-infrared and visible-wavelength observations) include a main oval that generally corotates with the planet and a region of patchy, diffuse emission inside the oval on Jupiter's dusk side. Here we report the discovery of a rapidly evolving, very bright and localized emission poleward of the northern main oval, in a region connected magnetically to Jupiter's outer magnetosphere. The intensity of the emission increased by a factor of 30 within 70 s, and then decreased on a similar timescale, all captured during a single four-minute exposure. This type of flaring emission has not previously been reported for Jupiter (similar, but smaller, transient events have been observed at Earth), and it may be related directly to changes in the solar wind.  相似文献   

18.
Frey HU  Phan TD  Fuselier SA  Mende SB 《Nature》2003,426(6966):533-537
The most important process that allows solar-wind plasma to cross the magnetopause and enter Earth's magnetosphere is the merging between solar-wind and terrestrial magnetic fields of opposite sense-magnetic reconnection. It is at present not known whether reconnection can happen in a continuous fashion or whether it is always intermittent. Solar flares and magnetospheric substorms--two phenomena believed to be initiated by reconnection--are highly burst-like occurrences, raising the possibility that the reconnection process is intrinsically intermittent, storing and releasing magnetic energy in an explosive and uncontrolled manner. Here we show that reconnection at Earth's high-latitude magnetopause is driven directly by the solar wind, and can be continuous and even quasi-steady over an extended period of time. The dayside proton auroral spot in the ionosphere--the remote signature of high-latitude magnetopause reconnection--is present continuously for many hours. We infer that reconnection is not intrinsically intermittent; its steadiness depends on the way that the process is driven.  相似文献   

19.
Magnetic reconnection is a process that converts magnetic energy into bi-directional plasma jets; it is believed to be the dominant process by which solar-wind energy enters the Earth's magnetosphere. This energy is subsequently dissipated by magnetic storms and aurorae. Previous single-spacecraft observations revealed only single jets at the magnetopause--while the existence of a counter-streaming jet was implicitly assumed, no experimental confirmation was available. Here we report in situ two-spacecraft observations of bi-directional jets at the magnetopause, finding evidence for a stable and extended reconnection line; the latter implies substantial entry of the solar wind into the magnetosphere. We conclude that reconnection is determined by large-scale interactions between the solar wind and the magnetosphere, rather than by local conditions at the magnetopause.  相似文献   

20.
Several planetary missions have reported the presence of substantial numbers of energetic ions and electrons surrounding Jupiter; relativistic electrons are observable up to several astronomical units (au) from the planet. A population of energetic (>30[?]keV) neutral particles also has been reported, but the instrumentation was not able to determine the mass or charge state of the particles, which were subsequently labelled energetic neutral atoms. Although images showing the presence of the trace element sodium were obtained, the source and identity of the neutral atoms---and their overall significance relative to the loss of charged particles from Jupiter's magnetosphere---were unknown. Here we report the discovery by the Cassini spacecraft of a fast (>103[?]km[?]s-1) and hot magnetospheric neutral wind extending more than 0.5[?]au from Jupiter, and the presence of energetic neutral atoms (both hot and cold) that have been accelerated by the electric field in the solar wind. We suggest that these atoms originate in volcanic gases from Io, undergo significant evolution through various electromagnetic interactions, escape Jupiter's magnetosphere and then populate the environment around the planet. Thus a 'nebula' is created that extends outwards over hundreds of jovian radii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号