首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
研究带分数阶 Laplace 算子的时间-空间分数阶偏微分方程解的渐近性, 其中时间分数阶导数是在 Caputo 导数意义下, 其导数阶 $\alpha\in(1,2)$. 利用 Fox $H$-函数的性质和 Young 不等式给出了解的梯度估计, 并且研究了其长时间行为.  相似文献   

2.
考虑一类时间分数阶电报方程,它是由传统的电报方程推广而来,即时间一阶、二阶导数分别用α(1/2,1],2α(1,2]阶Caputo导数代替.利用空间有限的sine或cosine变换及时间Laplace变换,给出了该方程有限区间上带Dirichlet和Neumann边界条件的两类初边值问题的解析解.该解由Mittag-Leffler函数的级数形式给出.  相似文献   

3.
介绍了3种求解带有Caputo型导数的时间-空间分数阶扩散方程的方法.通过分离变量和级数展开求数值解,将Fourier变换和Laplace变换用于求解析解,并把时间和空间定义域上的分数阶导数分别限制在0γ≤1,0β≤2.  相似文献   

4.
给出了两种常见分数阶导数即Riemann-Liouville分数阶导数和Caputo分数阶导数的拉普拉斯变换公式,并给出具体实例说明如何利用拉普拉斯变换求解分数阶微分方程和分布阶微分方程.  相似文献   

5.
本文考虑一类具有修正Riemann-Liouville分数阶导数的空时分数阶混合(1+1)维KdV方程.利用分数阶复变换,本文将非线性分数阶偏微分方程转化为非线性常微分方程,然后应用首次积分法和Maple软件得到了该方程的精确解.  相似文献   

6.
利用推广的Kudryashov方法, 借助分数阶行波变换和一致分数阶导数, 给出非线性广义时间分数阶Sharma Tasso Olver方程和Zakharov方程组的若干双曲函数形式的精确解.  相似文献   

7.
Feller算子下的空间分数阶扩散方程定解问题   总被引:1,自引:0,他引:1  
讨论了用分数阶Feller算子替换扩散方程中对空间变量二阶偏导数后得到的空间分数阶扩散方程定解问题的求解问题,给出一个求解该类问题的公式.利用该公式及Fourier变换得到问题的解,并当α→2,即θ→0时,问题的解与整数阶扩散方程的解一致.  相似文献   

8.
在有限区域内考虑具有初边值问题的Riesz空间分数阶扩散方程,传统扩散方程中的二阶空间导数由Riesz分数阶导数α(1<α≤2)代替就得到Riesz空间分数阶扩散方程.我们提出一个在时间和空间都具有二阶精度的隐式方法,这个方法基于古典的Crank-Nicholson方法与空间外推方法,该隐式方法是无条件稳定和收敛的.最后给出一些数值例子来证实格式是高阶收敛的,此技巧可应用于解其它分数阶微分方程.  相似文献   

9.
考虑两类时间空间分数阶对流-弥散方程,它们是由传统的对流-弥散方程推广而来(时间一阶导数用μ∈(0,1]阶Caputo导数代替,空间一阶、二阶导数分别用α∈(0,1]和β∈(1,2]阶Riesz或Caputo导数代替).它们的Cauchy问题的基本解可以通过Laplace-Fourier变换得出,其表达式可以通过适当的变形求得,并证明了其空间概率密度的性质.  相似文献   

10.
刘明鼎  张艳敏 《河南科学》2014,(9):1688-1691
给出了求解一类时间分数阶时滞微分方程的数值解法,将传统对时间的一阶导数利用分数阶导数α(0α1)阶导数代替,给出了求解微分方程的差分格式,并对差分格式证明了收敛性和稳定性,数值算例检验该格式解决此类方程是有效的.  相似文献   

11.
为解决与毕达哥拉斯方程x2+y2=z2相关的整数矩阵方程问题, 利用矩阵的基本运算把整数矩阵方程问题转化成不定方程求解的问题, 从特殊情形逐步推广到一般情形, 研究了与毕达哥拉斯方程相关的一类二阶整数矩阵方程${\mathit{\boldsymbol{X}}^2} + {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} $ ($\lambda \in \mathbb{Z}, \boldsymbol{I} $为单位矩阵), 并得到其全部解( X , Y ), 类似可得二阶整数矩阵方程${\mathit{\boldsymbol{X}}^2} - {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} $的全部解.  相似文献   

12.
主要研究稳态扩散方程混合边值问题中未知传导系数的识别. 假设传导系数$\alpha(x)$未知,则由测量数据$z^\delta=u(x), x\in\Omega$可以唯一确定$\alpha(x)$.此外, 在简化的来源条件下, 利用Tikhonov正则化方法, 可以得到扩散方程正则化解以及正则化传导系数的收敛率.  相似文献   

13.
周玉鼎  斯仁道尔吉 《河南科学》2009,27(12):1479-1483
考虑时间分数阶电报方程混合边值问题的求解问题,借助于变量分离技巧和同伦摄动法,得到时间分数阶电报方程在齐次和非齐次边界条件下的解析解.  相似文献   

14.
假设$\phi$是单位圆$D$上一个解析自映射,$X$是单位圆$D$上一个Banach空间. 定义$X$上复合算子:$C_{\phi}: C_{\phi}(f)=f o \phi$,对所有的$f\in X$. 本文利用$K-$Carleson测度刻画了$B_{\log}^{\alpha}(B_{\log,0}^{\alpha})$空间到$Q_{k}(p, q)(Q_{k, 0}(p, q))$空间的复合算子的有界性,以及$B_{\log}^{\alpha}(B_{\log,0}^{\alpha})$空间到$Q_{k,0}(p, q)$空间的复合算子的有界性和紧性.  相似文献   

15.
该文首先应用代数数论的方法证明了不定方程~$x{^2}+4{^n}=y{^9}$~在~$x\equiv 1 \pmod{2}$ 时无整数解, 再证明不定方程~$x{^2}+4{^n}=y{^9}$~在~$n \in\{6, 7, 8\}$~ 时均无整数解, 进而证明不定方程~$x{^2}+4{^n}=y{^9}$~仅当~$n\equiv 0 \pmod{9}$~和~$n\equiv 4 \pmod{9}$ 时有整数解, 且当~$n=9m$~时, 其整数解为~$(x,y)=(0,4{^m})$; 当~$n=9m+4$~时, 其整数解为~$(x,y)=(\pm16\times2{^{9m}},2\times4{^m}),$~ 这里的~$m$~为非负整数. 进一步, 根据~$k=5,9$ 的结论, 文章提出了一个关于不定方程~$x{^2}+4{^n}=y{^k}$ $(k$ 为奇数$)$ 的整数解的猜想, 以供后续研究.  相似文献   

16.
讨论了一类带有分数阶导数边值条件的分数阶微分方程■其中,D■是Rimann-Liouvile分数阶导数,η■i(0,1),0<η12<…<ηm-2<1,β■i[0,∞)。文中给出其格林函数及相关性质,运用凸泛函上的不动点指数定理来计算不动点指数,从而得到了上述边值问题至少存在一个正解的结论。最后通过一个例子说明定理的具体应用。  相似文献   

17.
设 $n$ 为任意正整数. 著名 Erd\H{o}s-Straus 猜想是指当 $n\ge 2$ 时, Diophantine 方程 $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 总有正整数解 $(x,y,z)$. 虽然有许多作者研究这个猜想, 但是至今它还未被解决. 设 $p\ge 5$ 为任意素数. 最近, Lazar 证明 Diophantine 方程 $ \frac{4}{p}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 在区域 $xy<\sqrt{z/2}$ 内没有 $x$ 与 $y$ 互素的正整数解 $(x,y,z)$. 同时, Lazar 提出问题: 在上述方程中以 $5/p$ 替换 $4/p$, 是否有类似结果? 这也是 Sierpinski 提出的一个猜想. 在本文中, 我们证明 Diophantine 方程 $\frac{a}{p}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 没有满足\ $x, y$ 互素且\ $xy<\sqrt{z/2}$ 的正整数解 $(x,y,z)$, 其中 $a$ 为满足\ $a<7\le p$ 的正整数. 这回答了上述 Lazar 问题, 并推广了 Lazar 的结果. 我们的证明方法和工具主要是利用有理数\ $\frac{a}{p}$ 的连分数表示.  相似文献   

18.
定义了解析函数类~$\mathcal{M}_\alpha(\phi)\, (\alpha1)$, 得到了它精确的~Fekete-Szeg\{o}不等式. 作为~Fekete-Szeg\{o}不等式的应用, 得到了通过分式微分定义的函数类的~Fekete-Szeg\{o}不等式.  相似文献   

19.
利用亚纯函数的Nevanlinna值分布理论的差分模拟,研究了给定的差分Painlev$\acute{e}$方程I和差分Painlev$\acute{e}$方程II的超越亚纯解的增长性,得到了一些有意义的结果:在给定的条件下,给出了给定的差分Painlev$\acute{e}$方程I和差分Painlev$\acute{e}$方程II的超越亚纯解的增长级的精确估计.  相似文献   

20.
考虑一类差分Painlev$\acute{e}$ $I$方程 $$ \overline{f}+f+\underline{f}=\frac{\pi_1 z +\pi_2}{f}+\kappa_1\eqno{(*)} $$ 有限级超越亚纯解的零点、极点、不动点和Borel例外值, 同时也给出了差分Painlev$\acute{e}$ $I$方程(*)的有理函数解的存在性及其表示形式, 其中$\overline{f}=f(z+1), f=f(z), \underline{f}=f(z-1), \pi_1 , \pi_2 , \kappa_1 \in\mathbb{C}$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号