首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在焓差实验室中研制了一套车用二氧化碳(C()2)喷射制冷空调系统,在标准汽车空调性能实验台上对不同工况参数下的C02制冷系统性能进行评估,并对比分析了C02喷射制冷系统的性能优势.研究结果表明:车用CC)2喷射制冷空调系统制冷量与车用C()z常规制冷系统制冷量相当;增大室内侧风量与提高压缩机转速能够有效提升C()2喷射...  相似文献   

2.
N_2O跨临界喷射/压缩制冷循环的理论研究   总被引:1,自引:1,他引:0  
为了解决CO_2跨临界循环能效低、排气压力高的问题,将天然工质N_2O用于跨临界循环,建立了相应的理论模型,比较了N_2O和CO_2用于跨临界喷射/压缩制冷循环和简单跨临界循环的性能,并对N_2O用于跨临界循环中的热稳定性进行了分析.研究结果表明:N_2O系统的性能系数和排气压力均优于CO_2,性能系数较CO_2系统分别增加了13%和9%,而排气压力分别降低了16%和13%;CO_2系统采用喷射/压缩跨临界循环后性能系数比简单跨临界循环提高了15.2%,稍高于N_2O系统的11.6%,说明使用喷射器对于CO2系统性能提升更为有利.分析了高压侧排气压力、蒸发温度和气体冷却器出口温度对于CO_2和N_2O跨临界喷射/压缩制冷循环的影响.结果表明:工况变化时N_2O和CO_2系统性能的变化规律一致,且气体冷却器出口温度越低、蒸发温度越高时,N_2O系统的性能系数增加越明显;制冷系统中N_2O的热稳定性能很好,不会分解.  相似文献   

3.
为了满足环境保护的需要,紧跟电动汽车发展潮流,在传统燃油车空调系统的基础上开发了一套二氧化碳(CO_2)电动汽车空调系统,在标准汽车空调性能实验台上研究了不同运行参数对其性能的影响和CO_2电动汽车空调的内在规律.结果表明:所开发的CO_2系统在标准工况下与如今仍在普遍使用的传统制冷剂R134a系统性能相当;在研究的所有运行参数中,室外温度对系统性能的影响最大,高温下性能衰减明显,采用电动压缩机可以满足车辆的实际车冷量需求,而现有的CO_2电动压缩机排气压力和排气温度的限制致使系统性能在一些恶劣工况下无法达到最优,因此系统性能仍有较大的提升空间;在相同的换热面积内,气冷器出口制冷剂与环境温差每下降1℃,系统能效比(COP)可以提升2%~5%,同时系统最优高压得到降低,蒸发温度每提升5℃,系统COP可以提升15%左右.  相似文献   

4.
针对跨临界CO_2汽车空调系统制冷性能较差的问题,分析了回热器大小对系统性能和运行参数的影响,在汽车空调测试环境实验室中搭建了一个可变回热量的跨临界CO_2制冷系统实验台,在35、38和41℃环境温度下,保持压缩机转速为3 500r/min,通过旁通阀调节回热量,测量了不同排气压力下全回风系统的稳态性能,分析了回热量对系统制冷量和能效比的提升作用,以及对压缩机运行参数的影响。结果表明:排气压力为10 MPa时,35、38和41℃下,使用回热器后系统的最大能效比分别提高了14.2%、23.3%和33.2%,制冷量也增加了14.3%~33.3%;使用回热器可以改善换热器压力损失,但同时会引起排气温度升高;相同温度下,系统最大回热度一般随环境温度升高而减小;回热器的使用可以有效提高系统性能,但也会引起压缩机压比增大和排气温度的上升。在跨临界CO_2制冷循环的回热器大小设计时,需要兼顾性能和安全。  相似文献   

5.
在分析基本吸附制冷循环的基础上,建立了基本吸附制冷循环热力过程中的各个热量的计算表达式.针对氯化钙氨吸附制冷实验系统的两种典型工况(制冷工况和空调工况),就解吸终了温度和吸附终了温度对制冷性能的影响进行了热力计算和分析,明确了空调工况下制冷系统性能更好的原因,并对计算结果从热力学理论角度进行了分析验证.  相似文献   

6.
研究了两相喷射器中流体的流动过程,并应用质量守恒、动量守恒、能量守恒对两相喷射器建立了热力学模型,以R134a/ R1234yf为工质,分析了喷射器结构参数以及工况参数对压缩/喷射制冷系统性能的影响。计算结果表明:喷射器存在最佳喷嘴出口面积和最佳喉部面积比使压缩/喷射制冷系统的性能最佳;性能系数(COP)随蒸发温度升高和冷凝降低而升高,而性能系数提高率(COPi)随着蒸发温度降低和冷凝温度升高而升高;相同工况下,以R134a为工质的系统性能系数、制冷量均高于R1234yf;当系统以R1234yf为工质,蒸发温度为5℃,冷凝温度为55℃时,压缩/喷射制冷系统的COP值较传统压缩制冷系统的COP值可提高26%。  相似文献   

7.
研究了两相喷射器中流体的流动过程,并应用质量守恒、动量守恒、能量守恒对两相喷射器建立了热力学模型,以R134a/R1234yf为工质,分析了喷射器结构参数以及工况参数对压缩/喷射制冷系统性能的影响。计算结果表明:喷射器存在最佳喷嘴出口面积和最佳喉部面积比使压缩/喷射制冷系统的性能最佳;性能系数(COP)随蒸发温度升高和冷凝温度降低而升高,而性能系数提高率(COPi)随着蒸发温度降低和冷凝温度升高而升高;相同工况下,以R134a为工质的系统性能系数、制冷量均高于R1234yf;当系统以R1234yf为工质,蒸发温度为5℃,冷凝温度为55℃时,压缩/喷射制冷系统的COP值较传统压缩制冷系统的COP值可提高26%。  相似文献   

8.
实验研究证实,圆孔翅片管在无霜工况下的传热性能远优于平翅片管,但积霜工况下的传热与制冷性能是否优越没有得到实验验证.利用冰箱制冷系统,分别采用圆孔-半圆孔交叉翅片、圆孔翅片以及平翅片管式换热器,进行积霜工况下的传热和制冷性能对比性实验研究.考察了积霜过程对圆孔孔径大小的影响;分析比较了3种不同片型的有效制冷量、传热系数和实际制冷系数;比较了强化翅片的节能效果;采用有限元法求解出翅片效率,并分离求出实际对流换热系数,从而揭示了翅片表面的实际换热情况.结果表明:与平翅片相比,当最窄截面风速为0.5 m/s时,积霜工况下,圆孔翅片的传热系数平均提高了11.53%;对流换热系数平均提高了18.84%;实际制冷系数平均提高了6.83%;有效制冷量平均提高了6.02%;节省电能6.39%.圆孔翅片是3种片型中的最优片型.  相似文献   

9.
针对HFC410A制冷空调系统开发的具有两级膨胀过程的滑片式膨胀机,其内容积比为7.66且满足HFC410A高容积膨胀比的要求,搭建了HFC410A制冷空调实验系统,并对不同工况和转速下的样机进行了实验研究。结果表明:两级滑片式膨胀机系统的性能系数(COP)最多提高11.7%,最大等熵效率为33.7%,在常规压比下膨胀机的最佳转速为1 300~1 400r/min;高压工况下摩擦损失减少,膨胀机输出功增大,有益于系统COP提升;过冷度增大,系统制冷量提高,有益于系统COP提升,但膨胀机回收功减小,相对于节流阀系统的COP提高率减小,膨胀机替换节流阀后的经济性优势降低,系统过冷度对膨胀机等熵效率和容积效率的影响较小。  相似文献   

10.
对自制吸附剂(DH-50,DH-70)、硅胶和13x的除湿制冷性能进行了实验研究.测定了DH-50和DH-70吸附剂的吸附等温线;对DH-50、DH-70、硅胶和13x用于除湿制冷(空调)过程的动态特性进行了研究;讨论了吸附量、空气湿度、再生温度、制冷量和单位质量吸附剂的制冷功率对固体除湿空调系统的影响.结果表明DH-50和DH-70的除湿制冷性能明显优于常规吸附剂(硅胶和13x).DH-50和DH-70吸附剂的最大平衡吸附量分别为0.721kg/kg和0.736kg/kg;在100℃条件下再生,DH-70吸附剂的除湿制冷量是硅胶的2.2倍,单位质量吸附剂的制冷功率是硅胶1.9倍;在较高再生温度(200~250℃)下,DH-50吸附剂的除湿制冷量是13x的1.3倍,单位质量DH-70吸附剂的制冷功率是13x的2.2倍.DH-50和DH-70吸附剂具有较宽的温度使用范围,既适用于以低位热源驱动的除湿制冷系统,也可用于利用汽车尾气(300~500℃)等较高温度热源的场合.  相似文献   

11.
R134a作为喷射制冷循环的工质可获得较高循环性能,但因其具有较高全球变暖潜能值(global warming potential,GWP),所以将逐步被限制使用或被新型绿色环保制冷剂所替代。本文提出以低GWP值的R1234yf作为喷射制冷循环工质,建立了喷射制冷循环热力学数学模型。分析了以R1234yf、R134a和R600a为工质的喷射制冷循环喷射器的喷射因数、制冷量和性能因数随着蒸发温度、冷凝温度和发生器出口温度的变化关系。研究结果表明:相同的工况下,采用R1234yf为工质喷射制冷循环可获得最高喷射器喷射因数和最大制冷量,但以R1234yf为工质喷射制冷循环所获得性能因数(coefficient of performance,COP)较R134a低7.0%,比R600a高20.2%。综合评价认为:R1234yf为工质的喷射制冷循环性能优于R600a,且与采用R134a为工质的喷射制冷循环性能相当。  相似文献   

12.
风冷半导体空调的散热问题   总被引:1,自引:0,他引:1  
设计由两组半导体模块组成的半导体空调系统,整个系统输入功率为170 W,制冷空间为600 mm×600 mm×600 mm,性能系数COP为0.62.实验结果表明,制冷实验20 min后,制冷空间的温度下降了11℃.同时探讨不同储冷块对实际制冷量的影响,结果表明,半导体热电堆存在合适的储冷块厚度.TEC1-12708型半导体制冷片在12 V、2.8 A工况下运行时,储冷块厚度为10 mm时可以得到较大的实际制冷量.  相似文献   

13.
室温磁制冷活性蓄冷器制冷性能的实验研究   总被引:6,自引:0,他引:6  
采用金属钆作为磁性材料,建立了室温磁制冷系统实验台,开发了控制和采集系统,实验研究了在几种典型工况下室温磁制冷活性蓄冷器的热力性能,获得了制冷量的数据.实验结果表明,在3℃的温度跨度下,该系统可获得18.7W的制冷量.对温度区间、温度跨度、流动时间和流量几种情况的研究表明在实验范围内,温度跨度和流量的增大会使制冷量减小,流动时间的增加会使制冷量加速减小,温度区间跨越居里点能使制冷量有所增大.  相似文献   

14.
新型无溶液泵氨水吸收式制冷空调系统及其性能分析   总被引:1,自引:0,他引:1  
介绍了一种新型无溶液泵和精馏装置的氨水吸收式制冷空调系统,确定了系统在空调工况运行的基本参数,并针对该系统定义了一个新参数,即发生器溶液存留系数然后对系统热力性能进行了计算分析.分析结果表明:在设定制冷量为1.5 kW时,系统的性能系数可达0.28;当溶液存留系数由0增加到3时,系统性能系数较初始值降低60%,溶液存留系数对系统性能系数影响显著;冷剂含水率增加使系统性能系数和制冷量迅速线性递减,当冷剂含水率增加到0.14时,系统丧失制冷能力;蒸发温度降低或冷凝温度升高都会降低系统的性能系数,二者的影响较为平缓.针对各参数的影响初步探讨了提高系统性能系数的措施.  相似文献   

15.
以内燃机为原动机的分布式供能系统中,发动机工况变化对吸收式制冷机运行具有重要影响.建立了某发电用气体机排气驱动的吸收式制冷系统稳态模型,提出了"动态多种群粒子群优化(DMS-PSO)+NM单纯形法"复合算法对模型进行求解.依据气体机实测余热数据,研究了发动机不同工况下调节溶液循环量对系统性能的影响.结果表明,以额定溶液循环量运行时,当发动机负荷低于30%,时,余热制冷系统由于循环倍率过大而无法正常运行.通过减小溶液循环量可以显著改善发动机低负荷时的系统性能,发动机负荷为40%,时,系统制冷量提升26.9%,.由于溶液结晶限制,在发动机不同负荷下,溶液循环量调节存在最低限值.  相似文献   

16.
以太原地区的气象参数为背景,利用TRNSYS仿真软件,模拟计算以R141b为制冷剂的蓄热型太阳能喷射制冷系统在夏季典型日的性能,分析系统的喷射系数、制冷量、能效比(COP)随着太阳辐射照度的逐时变化,以及蒸发温度、冷凝温度、喷射器喉部面积比(r)对系统性能系数的影响.结果表明:系统的性能随太阳辐射照度增强而提高;蓄热装置的使用拓宽了系统高效运行的时间,更加有效地利用了太阳能;在系统运行时段,各性能系数逐时变化趋势一致,且随着蒸发温度的升高而增大,随着冷凝温度的升高而减小;同一工况下,r值越大喷射系数越大,  相似文献   

17.
设计并搭建了喷射制冷系统性能研究实验台,选取水作为制冷剂进行喷射制冷实验.主要研究工况条件(工作蒸汽温度、蒸发温度、冷凝压力)、喷射器结构(等截面积段长度和喷嘴出口与喷嘴喉部的面积比)对系统COP的影响.研究结果可进一步了解喷射式制冷的工作原理,为改进和提高蒸汽喷射式制冷系统性能提供参考.  相似文献   

18.
双元工质太阳能喷射制冷空调系统集热器   总被引:5,自引:0,他引:5  
用设计工况性价比评价集热器在太阳能制冷系统中的性能时,通常没有考虑系统运行时气象参数变化的影响.在不同气象条件下,对5种集热器构成的双元工质制冷系统性价比进行了排序对比,并以太原地区为例.对设计气象条件与寿命期气象条件下太阳能制冷系统集热器的热性能及经济性进行了分析,结果表明,气象参数变化时,各种集热器构成的制冷系统性价比排序也随之变化.这说明采用气象条件特定的设计工况性价比评价集热器不合理,综合考虑寿命期气象条件的寿命期性价比更全面,在太原地区,双层盖板平板集热器用于太阳能喷射制冷系统,寿命期性价比最优;热性能最优的CPC集热器在相同制冷量下,所需集热面积最小,为双层盖板集热器的58.6%,减少了安装空间.  相似文献   

19.
吸收-喷射与吸收式制冷系统的热经济学比较   总被引:1,自引:0,他引:1  
分析比较了吸收喷射复合制冷循环系统和双效吸收式制冷循环系统在热力性能和流程方面的差异.提出了两系统的热经济模型,并分别对余热型和直燃型冷水机组进行了计算.指出余热型三压吸收喷射复合制冷系统比双效吸收式制冷系统更加经济,当采用直燃型冷水机组(β>β1)时,两系?..  相似文献   

20.
一种新型双温热源喷射制冷系统   总被引:3,自引:0,他引:3  
提出一种新型双温热源喷射式制冷系统,该系统由第1喷射器和第2喷射器共同驱动,有效利用第2喷射器的增压作用提高第1喷射器引射蒸汽的压力,提高了系统总压比。与传统单喷射制冷系统相比,该系统在相同的冷凝温度下,蒸发器中能获得更低的制冷温度。建立了组成系统部件热力学数学模型,分析了中间压力、压比分配率、冷凝温度、蒸发温度和发生温度对该系统工作特性影响。研究表明:相同工况下,新系统的制冷温度比传统单喷射系统制冷温度可降低10~15℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号