首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent discovery of superconductivity in the iron oxypnictide family of compounds has generated intense interest. The layered crystal structure with transition-metal ions in planar square-lattice form and the discovery of spin-density-wave order near 130 K (refs 10, 11) seem to hint at a strong similarity with the copper oxide superconductors. An important current issue is the nature of the ground state of the parent compounds. Two distinct classes of theories, distinguished by the underlying band structure, have been put forward: a local-moment antiferromagnetic ground state in the strong-coupling approach, and an itinerant ground state in the weak-coupling approach. The first approach stresses on-site correlations, proximity to a Mott-insulating state and, thus, the resemblance to the high-transition-temperature copper oxides, whereas the second approach emphasizes the itinerant-electron physics and the interplay between the competing ferromagnetic and antiferromagnetic fluctuations. The debate over the two approaches is partly due to the lack of conclusive experimental information on the electronic structures. Here we report angle-resolved photoemission spectroscopy (ARPES) of LaOFeP (superconducting transition temperature, T(c) = 5.9 K), the first-reported iron-based superconductor. Our results favour the itinerant ground state, albeit with band renormalization. In addition, our data reveal important differences between these and copper-based superconductors.  相似文献   

2.
The origin of multiple superconducting gaps in MgB2   总被引:3,自引:0,他引:3  
Magnesium diboride, MgB2, has the highest transition temperature (T(c) = 39 K) of the known metallic superconductors. Whether the anomalously high T(c) can be described within the conventional BCS (Bardeen-Cooper-Schrieffer) framework has been debated. The key to understanding superconductivity lies with the 'superconducting energy gap' associated with the formation of the superconducting pairs. Recently, the existence of two kinds of superconducting gaps in MgB2 has been suggested by several experiments; this is in contrast to both conventional and high-T(c) superconductors. A clear demonstration of two gaps has not yet been made because the previous experiments lacked the ability to resolve the momentum of the superconducting electrons. Here we report direct experimental evidence for the two-band superconductivity in MgB2, by separately observing the superconducting gaps of the sigma and pi bands (as well as a surface band). The gaps have distinctly different sizes, which unambiguously establishes MgB2 as a two-gap superconductor.  相似文献   

3.
Elements in the alkali metal series are regarded as unlikely superconductors because of their monovalent character. A superconducting transition temperature as high as 20 K, recently found in compressed lithium (the lightest alkali element), probably arises from pressure-induced changes in the conduction-electron band structure. Superconductivity at ambient pressure in lithium has hitherto remained unresolved, both theoretically and experimentally. Here we demonstrate that lithium is a superconductor at ambient pressure with a transition temperature of 0.4 mK. As lithium has a particularly simple conduction electron system, it represents an important case for any attempts to classify superconductors and transition temperatures, especially to determine if any non-magnetic configuration can exclude superconductivity down to zero temperature. Furthermore, the combination of extremely weak superconductivity and relatively strong nuclear magnetism in lithium would clearly lead to mutual competition between these two ordering phenomena under suitably prepared conditions.  相似文献   

4.
Vortex dynamics in superconducting MgB2 and prospects for applications   总被引:9,自引:0,他引:9  
Bugoslavsky Y  Perkins GK  Qi X  Cohen LF  Caplin AD 《Nature》2001,410(6828):563-565
The recently discovered superconductor magnesium diboride, MgB2, has a transition temperature, Tc, approaching 40 K, placing it intermediate between the families of low- and high-temperature superconductors. In practical applications, superconductors are permeated by quantized vortices of magnetic flux. When a supercurrent flows, there is dissipation of energy unless these vortices are 'pinned' in some way, and so inhibited from moving under the influence of the Lorentz force. Such vortex motion ultimately determines the critical current density, Jc, which the superconductor can support. Vortex behaviour has proved to be more complicated in high-temperature superconductors than in low-temperature superconductors and, although this has stimulated extensive theoretical and experimental research, it has also impeded applications. Here we describe the vortex behaviour in MgB2, as reflected in Jc and in the vortex creep rate, S, the latter being a measure of how fast the 'persistent' supercurrents decay. Our results show that naturally occurring grain boundaries are highly transparent to supercurrents, a desirable property which contrasts with the behaviour of the high-temperature superconductors. On the other hand, we observe a steep, practically deleterious decline in Jc with increasing magnetic field, which is likely to reflect the high degree of crystalline perfection in our samples, and hence a low vortex pinning energy.  相似文献   

5.
In January of 2001 the superconductivity of the compound MgB2 with a critical temperature Tc of up to 39 K was discovered. This Tc is the highest in all intermetallic compound and alloy superconductors. MgB2 has a simple structure and its manufacturing capital cost is lower, therefore it could become a practical superconductor in the future. The recent progress is reviewed here which covers the progress in electronic structure, high Tc mechanism, superconducting parameters (Debye temperature, specific heat coefficient of electron, critical fields, coherent length, penetration depth, energy gap, critical current and relaxation rate of flux). Moreover the issue on power transmission is discussed.  相似文献   

6.
Puzzling aspects of high-transition-temperature (high-Tc) superconductors include the prevalence of magnetism in the normal state and the persistence of superconductivity in high magnetic fields. Superconductivity and magnetism generally are thought to be incompatible, based on what is known about conventional superconductors. Recent results, however, indicate that antiferromagnetism can appear in the superconducting state of a high-Tc superconductor in the presence of an applied magnetic field. Magnetic fields penetrate a superconductor in the form of quantized flux lines, each of which represents a vortex of supercurrents. Superconductivity is suppressed in the core of the vortex and it has been suggested that antiferromagnetism might develop there. Here we report the results of a high-field nuclear-magnetic-resonance (NMR) imaging experiment in which we spatially resolve the electronic structure of near-optimally doped YBa2Cu3O7-delta inside and outside vortex cores. Outside the cores, we find strong antiferromagnetic fluctuations, whereas inside we detect electronic states that are rather different from those found in conventional superconductors.  相似文献   

7.
Gomes KK  Pasupathy AN  Pushp A  Ono S  Ando Y  Yazdani A 《Nature》2007,447(7144):569-572
Pairing of electrons in conventional superconductors occurs at the superconducting transition temperature T(c), creating an energy gap Delta in the electronic density of states (DOS). In the high-T(c) superconductors, a partial gap in the DOS exists for a range of temperatures above T(c) (ref. 2). A key question is whether the gap in the DOS above T(c) is associated with pairing, and what determines the temperature at which incoherent pairs form. Here we report the first spatially resolved measurements of gap formation in a high-T(c) superconductor, measured on Bi2Sr2CaCu2O8+delta samples with different T(c) values (hole concentration of 0.12 to 0.22) using scanning tunnelling microscopy. Over a wide range of doping from 0.16 to 0.22 we find that pairing gaps nucleate in nanoscale regions above T(c). These regions proliferate as the temperature is lowered, resulting in a spatial distribution of gap sizes in the superconducting state. Despite the inhomogeneity, we find that every pairing gap develops locally at a temperature T(p), following the relation 2Delta/k(B)T(p) = 7.9 +/- 0.5. At very low doping (< or =0.14), systematic changes in the DOS indicate the presence of another phenomenon, which is unrelated and perhaps competes with electron pairing. Our observation of nanometre-sized pairing regions provides the missing microscopic basis for understanding recent reports of fluctuating superconducting response above T(c) in hole-doped high-T(c) copper oxide superconductors.  相似文献   

8.
High critical currents in iron-clad superconducting MgB2 wires   总被引:17,自引:0,他引:17  
Jin S  Mavoori H  Bower C  van Dover RB 《Nature》2001,411(6837):563-565
Technically useful bulk superconductors must have high transport critical current densities, Jc, at operating temperatures. They also require a normal metal cladding to provide parallel electrical conduction, thermal stabilization, and mechanical protection of the generally brittle superconductor cores. The recent discovery of superconductivity at 39 K in magnesium diboride (MgB2) presents a new possibility for significant bulk applications, but many critical issues relevant for practical wires remain unresolved. In particular, MgB2 is mechanically hard and brittle and therefore not amenable to drawing into the desired fine-wire geometry. Even the synthesis of moderately dense, bulk MgB2 attaining 39 K superconductivity is a challenge because of the volatility and reactivity of magnesium. Here we report the successful fabrication of dense, metal-clad superconducting MgB2 wires, and demonstrate a transport Jc in excess of 85,000 A cm-2 at 4.2 K. Our iron-clad fabrication technique takes place at ambient pressure, yet produces dense MgB2 with little loss of stoichiometry. While searching for a suitable cladding material, we found that other materials dramatically reduced the critical current, showing that although MgB2 itself does not show the 'weak-link' effect characteristic of the high-Tc superconductors, contamination does result in weak-link-like behaviour.  相似文献   

9.
考虑到晶体结构与电子能带结构,在 Hubbard 单带模型中引入电子与激子的互作用项,对有些氧化物超导体的反铁磁绝缘体—金属(超导)转变现象(M—I 转变),氧化物超导体的高 Tc 原因及二维特性进行了解释.  相似文献   

10.
Formation of electron pairs is essential to superconductivity. For conventional superconductors, tunnelling spectroscopy has established that pairing is mediated by bosonic modes (phonons); a peak in the second derivative of tunnel current d2I/dV2 corresponds to each phonon mode. For high-transition-temperature (high-T(c)) superconductivity, however, no boson mediating electron pairing has been identified. One explanation could be that electron pair formation and related electron-boson interactions are heterogeneous at the atomic scale and therefore challenging to characterize. However, with the latest advances in d2I/dV2 spectroscopy using scanning tunnelling microscopy, it has become possible to study bosonic modes directly at the atomic scale. Here we report d2I/dV2 imaging studies of the high-T(c) superconductor Bi2Sr2CaCu2O8+delta. We find intense disorder of electron-boson interaction energies at the nanometre scale, along with the expected modulations in d2I/dV2 (refs 9, 10). Changing the density of holes has minimal effects on both the average mode energies and the modulations, indicating that the bosonic modes are unrelated to electronic or magnetic structure. Instead, the modes appear to be local lattice vibrations, as substitution of 18O for 16O throughout the material reduces the average mode energy by approximately 6 per cent--the expected effect of this isotope substitution on lattice vibration frequencies. Significantly, the mode energies are always spatially anticorrelated with the superconducting pairing-gap energies, suggesting an interplay between these lattice vibration modes and the superconductivity.  相似文献   

11.
The ground state of superconductors is characterized by the long-range order of condensed Cooper pairs: this is the only order present in conventional superconductors. The high-transition-temperature (high-T(c)) superconductors, in contrast, exhibit more complex phase behaviour, which might indicate the presence of other competing ground states. For example, the pseudogap--a suppression of the accessible electronic states at the Fermi level in the normal state of high-T(c) superconductors-has been interpreted as either a precursor to superconductivity or as tracer of a nearby ground state that can be separated from the superconducting state by a quantum critical point. Here we report the existence of a second order parameter hidden within the superconducting phase of the underdoped (electron-doped) high-T(c) superconductor Pr2-xCe(x)CuO4-y and the newly synthesized electron-doped material La2-xCe(x)CuO4-y (ref. 8). The existence of a pseudogap when superconductivity is suppressed excludes precursor superconductivity as its origin. Our observation is consistent with the presence of a (quantum) phase transition at T = 0, which may be a key to understanding high-T(c) superconductivity. This supports the picture that the physics of high-T(c) superconductors is determined by the interplay between competing and coexisting ground states.  相似文献   

12.
Schaak RE  Klimczuk T  Foo ML  Cava RJ 《Nature》2003,424(6948):527-529
The microscopic origin of superconductivity in the high-transition-temperature (high-T(c)) copper oxides remains the subject of active inquiry; several of their electronic characteristics are well established as universal to all the known materials, forming the experimental foundation that all theories must address. The most fundamental of those characteristics, for both the copper oxides and other superconductors, is the dependence of the superconducting T(c) on the degree of electronic band filling. The recent report of superconductivity near 4 K in the layered sodium cobalt oxyhydrate, Na(0.35)CoO2*1.3H2O, is of interest owing to both its triangular cobalt-oxygen lattice and its generally analogous chemical and structural relationships to the copper oxide superconductors. Here we show that the superconducting T(c) of this compound displays the same kind of behaviour on chemical doping that is observed in the high-T(c) copper oxides. Specifically, the optimal superconducting T(c) occurs in a narrow range of sodium concentrations (and therefore electron concentrations) and decreases for both underdoped and overdoped materials, as observed in the phase diagram of the copper oxide superconductors. The analogy is not perfect, however, suggesting that Na(x)CoO2*1.3H2O, with its triangular lattice geometry and special magnetic characteristics, may provide insights into systems where coupled charge and spin dynamics play an essential role in leading to superconductivity.  相似文献   

13.
近年来,随着相关技术的快速发展,单轴应变或单轴压强技术在研究非常规超导体中被广泛地应用.在单轴压强或单轴应变研究中,样品沿着某个晶轴的方向发生应变,其物理性质也会发生相应的改变.通过研究这种改变,就可能获得超导或其他序的重要信息.和静水压相比,单轴压强对物理性质的改变主要和对称性有关,这使得单轴压强和单轴应变的研究特别适用于与对称性相关联的物理性质,例如,与旋转对称性相关的电子向列相.更重要的是,单轴压强技术也能够用于超导电性性质的研究.本文将介绍常用的单轴压强和单轴应变装置和技术,并介绍其在铁基超导体和其他超导体中的一些典型应用.表明单轴压强和单轴应变技术在研究电子向列相、超导序参量和其他一些竞争序方面具有独特的优势,并将随着相关技术的发展在超导及其他强关联电子体系研究中发挥更重要的作用.  相似文献   

14.
15.
The application of a sufficiently strong magnetic field to a superconductor will, in general, destroy the superconducting state. Two mechanisms are responsible for this. The first is the Zeeman effect, which breaks apart the paired electrons if they are in a spin-singlet (but not a spin-triplet) state. The second is the so-called 'orbital' effect, whereby the vortices penetrate into the superconductors and the energy gain due to the formation of the paired electrons is lost. For the case of layered, two-dimensional superconductors, such as the high-Tc copper oxides, the orbital effect is reduced when the applied magnetic field is parallel to the conducting layers. Here we report resistance and magnetic-torque experiments on single crystals of the quasi-two-dimensional organic conductor lambda-(BETS)2FeCl4, where BETS is bis(ethylenedithio)tetraselenafulvalene. We find that for magnetic fields applied exactly parallel to the conducting layers of the crystals, superconductivity is induced for fields above 17 T at a temperature of 0.1 K. The resulting phase diagram indicates that the transition temperature increases with magnetic field, that is, the superconducting state is further stabilized with magnetic field.  相似文献   

16.
All conventional metals are known to possess a three-dimensional Fermi surface, which is the locus in reciprocal space of the long-lived electronic excitations that govern their electronic properties at low temperatures. These excitations should have well-defined momenta with components in all three dimensions. The high-transition-temperature (high-T(c)) copper oxide superconductors have unusual, highly two-dimensional properties above the superconducting transition. This, coupled with a lack of unambiguous evidence for a three-dimensional Fermi surface, has led to many new and exotic models for the underlying electronic ground state. Here we report the observation of polar angular magnetoresistance oscillations in the overdoped superconductor Tl2Ba2CuO6+delta in high magnetic fields, which firmly establishes the existence of a coherent three-dimensional Fermi surface. Analysis of the oscillations reveals that at certain symmetry points, however, this surface is strictly two-dimensional. This striking form of the Fermi surface topography, long-predicted by electronic band structure calculations, provides a natural explanation for a wide range of anisotropic properties both in the normal and superconducting states. Our data reveal that, despite their extreme electrical anisotropy, the high-T(c) materials at high doping levels can be understood within a framework of conventional three-dimensional metal physics.  相似文献   

17.
核磁共振作为一种重要的谱学研究手段,在高温超导体的机理研究中发挥了极其重要的作用.近年来,随着新型铁基高温超导材料家族的发现以及基于强磁场下核磁共振技术的发展,相关高温超导方面的核磁共振研究也有了许多新的进展,这些工作对高温超导电性的机理研究起到了积极的推动作用.本文将就核磁共振技术在铜氧化物高温超导体和铁基高温超导体这两大类高温超导材料中的若干最新研究进展进行一个有针对性的概述和梳理,希望对后续高温超导电性的机理研究以及材料探索能起到一些启示作用.  相似文献   

18.
本文报导单相和多相Y-Ba-Cu-O化合物超导体的制备工艺及其超导电性.X射线分析及电子显微镜观察表明,名义配比Y:Ba:Cu=1:2:3的样品为单相,其他配比成分的样品呈多相,但在一定配比范围内均呈现超导电性.它们的零电阻温度均在90K附近.  相似文献   

19.
基于密度泛函理论第一性原理,计算了MoSe2的能带结构、态密度和光学性质,再根据相关参数分析了该材料的半导体特性和光学性质.能带结构结果表明MoSe2具有间接带隙宽度为0.853 eV的半导体材料,从态密度图可看出价带由Mo的5s4d价电子和Se的4s4p价电子起主要作用,其它价电子作用较少导带主要是Mo的4d和Se的...  相似文献   

20.
1 Results It is generally known that CuO2 planes of layered cuprate superconductors play a major role on the variation of critical temperature,Tc.In order to investigate their microscopic and electronic properties,preparation of such materials in single crystal form with highly structure orientation is very important.Crystal growth techniques for copper oxide materials have greatly improved since the discovery of high Tc superconductor materials[1].However,a strong reaction between CuO flux and crucible material has been a serious problem in crystal growth by using crucible,especially in a self-flux slow cooling method that needs long time.It is important to avoid the contamination from crucible material and also the ‘creeping out' problem of CuO flux during long time and high sintering temperature.In this study,we attempted to grew the GdBaSrCu3O7-δ single crystals via self-flux slow cooling technique.They were grown from CuO-rich nonstoichiometric solutions as similar as the YBCO case with approximately cation and powder ratio used as reported before[2-3].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号