首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
磺化交联聚乙烯醇球对低密度脂蛋白的选择性吸附   总被引:1,自引:1,他引:0  
徐建宽  卢玲  李海涛  何炳林 《科学通报》2001,46(23):1958-1961
通过在环氧化的交联聚乙烯醇球上固载多乙烯多胺和磺酸基因的方法制备了一种新型的低密度脂蛋白吸附剂,环氧化的交联聚乙烯醇球首先与乙二胺或二乙烯三胺、三乙烯四胺及四乙烯五胺等多乙烯多胺进行胺化反应,由此获得不同长度的手臂;而后将胺化的载体与二甲基甲酰胺中的氯磺酸反应,从而固载磺酸基因,体外吸附实验表明,这种吸附剂对低密度脂蛋白具有较高的吸附量和吸附选择性,且吸附速率快,研究表明,吸附剂的粒径、交联度等结构特性对吸附性能有较大影响;磺酸面载量的增加和手臂分子的引入可显著提高吸附剂对低密度脂蛋白的吸附量和选择性。  相似文献   

2.
微囊化基因工程菌作为口服制剂治疗尿毒症是近年来的研究新思路. Klebsiella aerogenes脲酶基因(UreDABCEFG)通过质粒pKAU17转入大肠杆菌E.coli DH5α, 经驯化后能以尿素或氨为惟一氮源生长, 因此可将其视为尿素吸附剂. 以聚乙烯醇为载体制备微囊化脲酶基因工程菌, 其机械强度远远高于APA微囊, 从而解决了APA微囊易破碎的缺点. 制备聚乙烯醇微囊化工程菌的适宜条件是聚乙烯醇(平均聚合度为2450)浓度为6%(质量体积比), 用硼酸交联其pH值为6.5, 反应时间24 h, 包菌量为8%(质量体积比), 气流量为3 L/min, 射流量为1 mL/10 min, 粒径主要分布于20~40目. 体外模拟试验表明, 含100 mg湿菌体的聚乙烯醇微囊4 h内清除尿素约18.4 mg.  相似文献   

3.
杨菊香  房喻  白超良  胡道道  张颖 《科学通报》2004,49(18):1845-1850
采用反相悬浮聚合法合成了丙烯酸(AA)含量不同的N-异丙基丙稀酰胺-丙烯酸共聚物 P(NIPAM-co-AA) 微凝胶, 并以其作为微反应器, 通过外源沉积法制备了一系列微米级、表面具有图案化结构的CuS-P(NIPAM-co-AA)有机-无机复合微球. 复合微球的表面结构与微凝胶的组成和无机物的沉积量有关. 可以预期: 微凝胶的固有优点(大小、组成、电荷性质、电荷密度以及交联程度等可通过改变单体种类和反应条件控制)使微凝胶模板法在表面图案化微球材料制备中有可能获得广泛应用.  相似文献   

4.
田秦  王蔚  贺晓婷  朱晓翠  黄微  张闯年  袁直  陈学思 《科学通报》2009,54(10):1317-1321
以丁二酸酯为间隔臂制备了甘草次酸修饰壳聚糖的肝靶向药物载体材料(mGA-suc-CTS), 通过IR, NMR及元素分析对产物的结构及取代度进行了表征; 以BSA为药物模型, 离子交联法制备了载药粒子, 初步研究了其体外释放性能. 结果表明, 载体材料中甘草次酸的含量可通过反应温度及投料比进行调控, 最高取代度可达5.19%; 纳米粒子对BSA的负载量为26.3%, 包封率为81.5%; 体外释放表明, 生理条件下(pH 7.4)缓释可达11天.  相似文献   

5.
以蒙脱石为载体和分散剂, 通过硼氢化钠化学液相还原三价铁离子成功制备了负载在蒙脱石上的零价铁纳米颗粒. 所得零价铁纳米颗粒不含硼化物杂质, 具有较高的单分散性, 且在蒙脱石上分散良好. 铁颗粒本身具核-壳结构, 内核为单质铁, 外壳为铁氧化物. 外壳厚度保持在3 nm左右, 赋予铁纳米颗粒较强的抗氧化能力. 通过控制三价铁离子用量可对所得铁纳米颗粒尺寸进行调节, 这种调节主要与蒙脱石所起分散作用有关.  相似文献   

6.
新型三相催化剂——磷酸盐固载季铵盐ZPDBBC   总被引:4,自引:0,他引:4  
傅相锴 《科学通报》1992,37(7):672-672
近20年相转移催化技术在有机合成化学中迅猛发展,而以交联聚苯乙烯树脂和硅胶作为不溶性载体的三相催化剂,日益受到相当的注意,迄今所报道的三相催化剂均是以这两者为载体的。一些四价或五价金属的磷酸盐具有相当稳定的结构,可以作为催化剂载体固载上各种活性基团以制备各种催化剂。 本文报道我们首次合成了固载于磷酸氢锆上的二丁基烃基苄基氯化铵(ZPDBBC),可  相似文献   

7.
肿瘤靶向性药物载体叶酸-淀粉纳米颗粒的研制与应用   总被引:9,自引:1,他引:8  
用反相微乳液法和交联法制备了带负电的交联淀粉纳米颗粒(StNP), 经过叶酸活性物质(FA-PEG-NH2)修饰, 成功制备了叶酸-淀粉纳米颗粒(FA-PEG/StNP). 原子力显微镜和Zeta-Sizer粒度仪检测表明所得颗粒的平均直径约为130 nm. FA-PEG/StNP与抗癌药物多柔比星(DOX)经渗透结合, 获得了载药叶酸-淀粉纳米颗粒, 用紫外分光光度法检测发现纳米颗粒结合DOX的饱和量为28 μg/mg, 并对药物DOX具有明显的缓释效果. 经过与肝癌细胞BEL7404共培养实验发现: 载药FA-PEG/StNP和载药StNP的半致死浓度LC50比DOX的半致死浓度明显提高, 表明FA-PEG/StNP和StNP都能显著降低DOX的细胞毒性. 而含相同量药物DOX的载药FA-PEG/StNP和载药StNP与肝癌细胞BEL7404共培养发现: 前者的细胞致死率是后者的3倍, 结果证实了修饰在颗粒上的FA能显著提高颗粒对肝癌细胞的靶向作用, 使更多药物作用于肿瘤细胞, 提高了作用效果. 所制备的叶酸-淀粉纳米颗粒具有药物缓释、靶向识别、降低毒副作用的特点, 可以作为肿瘤靶向性药物载体.  相似文献   

8.
聚乙烯醇水溶液经冷冻处理可以制得低温水凝胶,这是一种含水高达80%以上的橡胶状弹性体。本工作通过扫描电镜、x-射线衍射、DSC等手段,对凝胶的结构与性能进行了研究。确认低温PVA凝胶的可逆性,属于非共价键的物理交联。其强度和弹性源于氢键和微晶的存在。本文作者用PVA水凝胶为载体,成功地固定了酵母、乳酸菌、产氨短杆菌等微生物细胞,用于发酵和合成反应均取得了很好的结果。  相似文献   

9.
研究尼群地平脂质体的处方和制备工艺,用聚乙烯醇(PVA)包覆脂质体以提高脂质体的包封率和稳定性.用薄膜分散法,采用正交设计的原理制备尼群地平脂质体并测定了脂质体的包封率和粒径.实验结果表明该工艺方法可以制备包封率较高和稳定性较好的尼群地平脂质体.  相似文献   

10.
和涛 《科学之友》2009,(6):18-18,21
研究尼群地平脂质体的处方和制备工艺,用聚乙烯醇(PVA)包覆脂质体以提高脂质体的包封率和稳定性。用薄膜分散法,采用正交设计的原理制备尼群地平脂质体并测定了脂质体的包封率和粒径。实验结果表明该工艺方法可以制备包封率较高和稳定性较好的尼群地平脂质体。  相似文献   

11.
阚兰艳  郑冰娜  高超 《科学通报》2012,(22):2062-2065
石墨烯是一种具有二维纳米结构的材料,也是制备二维材料理想的模板.本文报道了一种以氧化石墨烯为模板制备二氧化硅纳米片的方法,利用原位自由基聚合将含硅聚合物聚(3-(异丁烯酰氧)丙基三甲氧基硅烷)接枝到氧化石墨烯片上,经过氨水交联、冻干和700℃下热处理,获得二氧化硅纳米片.  相似文献   

12.
本报考察了硫化鎳硅鋁的反应性能(与鈷鉬硅鋁作了比較),抗毒性能和其氮中毒作用以及反应条件的影响。催化剂(鎳含量4.9~5.1重%)制法是将12~40目粒状担体焙烧后,以硝酸鎳溶液浸渍、烘干与焙烧,然后以氫气还原或硫化氫硫化。鈷鉬硅鋁(鉬含量6.5,鈷0.8重%)的制法是将12~40目共胶球状硅鋁,先浸鉬酸銨,烘干后再浸  相似文献   

13.
孔令兵  张良莹  姚熹 《科学通报》1996,41(10):952-954
湿敏材料的开发与研究是传感器研究的重要领域.从材料的角度而言,湿敏材料主要包括电解质型、高分子型和陶瓷型3大类.氯化锂湿敏材料是典型的电解质型,早在70年代初期就已经实用化.其制作方法是将氯化锂溶液与聚乙烯醇溶液按一定比例混合,再利用混合溶液制备出湿敏薄膜.调节氯化锂与聚乙烯醇的比例,制出不同性质的膜,它们分别在不同的湿度范围内敏感.所以,要获得全湿范围内的敏感元件,必须将上述不同性质的膜以单元的形式组合.因此,使得传感器的成本很高,只限于在军事方面使用,民用化比较困难.众所周知,多孔二氧化硅具有很好的物理、化学稳定性,而且还可通过改变制备条件控制其显微结构.采用溶胶-凝胶技术可获得所需结构特性的多孔二氧化硅材料.本文偿试将氯化锂与多孔二氧化硅复合,获得了在全湿范围内具有敏感特性的湿敏薄膜材料.元件的响应、恢复特性很好,采用提拉法制备薄膜,方法简单,效果良好.  相似文献   

14.
用分散聚合与溶胀聚合相结合的方法和高分子溶液致孔技术,制备了可控粒度单分散并具有大孔-超大孔结构的交联聚甲基丙烯酸环氧丙酯微球。表征了这类树脂的结构,研究树脂的凝胶渗透色谱特性。树脂作为各种高效液相色谱填料的基质材料或反应性活性载体,具有优异的使用性能。  相似文献   

15.
黄丽洁  郑从光  张会旗 《科学通报》2019,64(13):1407-1417
将原子转移自由基沉淀聚合技术、表面锚定糖蛋白策略及表面引发的可控自由基聚合方法相结合,发展了一种简便高效地制备表面具有(由亲水性聚合物刷形成的)非交联结构糖蛋白(卵清蛋白(OVA))识别位点的分子印迹聚合物(MIP)微球的新方法.对所得具有不同非交联印迹壳层厚度的MIP微球的形貌、化学结构、表面亲水性及模板吸附性能进行了系统研究.结果表明,该方法可高效制备在水溶液中对OVA具有优异识别性能的MIPs.随着MIP微球表面亲水性聚合物刷的引入,其表面亲水性与水相分散稳定性明显提高;同时亲水性聚合物刷的长度亦对MIPs的模板吸附性能有显著影响:只有当亲水性聚合物刷长度与OVA粒径加上微球表面修饰的苯硼酸基的总长度相近时, MIP微球对OVA的吸附容量与专一性吸附方能达到最优;此外,该MIP还具有良好的OVA选择性.  相似文献   

16.
杨毅  刘国琴  阎隆飞 《科学通报》2001,46(6):461-466
将衣灌(Chlamydomonas reinhardtii)肌动蛋白(actin)基因(cDNA)与绿色荧光蛋白(green fluorescence protein,GFP)基因融合后,分别构建到原核和植物表达载体中,并在BL21plus细菌和烟草悬浮细胞(BY-2)中进行表达。通过荧光显微镜观测到重组后的融合蛋白在菌体和烟草悬浮细胞中得到正确表达。肌动蛋白-绿色荧光蛋白 的融合蛋白主要分布在烟草悬浮细胞细胞膜周围,参与膜骨架的组成,另外还大量分布于细胞核周围和细胞板的位置,同时也在细胞内形成丝状结构,参与F-actin的组成。将肌动蛋白-绿色荧光蛋白融合基因的原核表达产物经过硫酸铵分级沉淀、离子交换层析和疏水柱层析后,得以纯化,并在纯化产物中加入肌动蛋白聚合缓冲液,纯化的肌动蛋白能聚合成为丝状结构即F-actin,这表明低等藻类的肌动蛋白具有同高等植物和动物相似的性质和功能。  相似文献   

17.
聚乙烯树脂的制备及其在拆分DL-氨基酸方面的应用   总被引:4,自引:1,他引:3  
袁直 《科学通报》1989,34(16):1230-1230
本文报道了用霍夫曼降解法以交联聚丙稀酰胺为母体,制备聚乙烯胺树脂。转化率可达83%,对诸因素对转化率的影响进行了讨论。以此树脂为骨架,制备含L-脯氨酸-Cu(Ⅱ)的手性配体树脂,并以此为柱色谱固定相,将DL-色氨酸完全拆分,D型先于L型流出色谱柱。  相似文献   

18.
一种新的蛋白释放载体——水溶性壳聚糖纳米粒子   总被引:1,自引:0,他引:1  
王春  扶雄  杨连生 《科学通报》2007,52(1):35-40
以三聚磷酸钠作为交联剂, 采用离子交联法制备了不同构成的水溶性壳聚糖纳米粒子(WSC NP). 以牛血清蛋白(BSA)为模型药物, 所制得的空载及载药WSC NP粒径、Zeta电位分别在35~190 nm和35~42 mV之间. 红外光谱证实了纳米粒子中水溶性壳聚糖的氨基与TPP的磷酸基团发生了交联反应. 考察了WSC NP蛋白药物释放的一些影响因素. BSA浓度的增加(0.05~1 mg /mL)提高了WSC的载药量但同时降低了负载率; 聚乙二醇的添加加速了WSC载体中BSA的释放; WSC的脱乙酰度(72.6%~90%)及分子量(3.5~15.8 kDa)的增加在一定程度上提高了负载率而降低了释放率. 结果表明, 水溶性壳聚糖是一种极具应用潜力的蛋白药物释放载体.  相似文献   

19.
强MAR的分离及其体内外功能鉴定   总被引:6,自引:0,他引:6  
将MAR(matrix attachment region)构建到外源基因表达盒两侧可以促进外源基因的表达克服基因沉默。用PCR方法从烟草和拟南芥中分离到4个新的MAR序列(TM2,TM3,AM1和AM2),以水稻悬浮细胞为材料,提取大量细胞核制备核基质,以已发表的MAR(TM1)和对照,对4个新MARs序列进行体外结合实验,结果表明TM2和TM3与核基质的结合能力强于已知MAR序列。将4个新MARs和对照分别顺向构建和表达载体pBI121 gus基因表达盒两侧,用农杆菌介导法转化烟草,获得转基因植株。对转基因植株体内GUS酶活性检测表明,TM1,TM2,TM3和AM1均能命名外源基因表达增强,其中TM2增强5倍,TM1增强1.5倍,TM2增强效果强于对照TM1。表明分离到一个新的强MAR,可以用于高效表达载体的构建。对5个MARs的序列特征、体外结合能力及外源基因表达影响三者之间的关系进行了分析,并对获得的强MAR在植物基因工程中的应用进行了讨论。  相似文献   

20.
吴连锋  安晨  张悦  周传健  冯圣玉  卢海峰 《科学通报》2021,66(14):1746-1757
合成兼具高机械力学性能和多重循环利用性能的弹性体材料是一个极具挑战性的工作.诸多研究中提到的可行方法均存在操作繁琐、难以控制的特点,因而难以实现高强度和工业化生产.本研究报道了一种经由官能化聚硅氧烷和稀土盐之间的配位交联反应制备高强度含硅弹性体的方法.其中的配位交联反应是在模压成型阶段发生;制备过程简便,易于实现工业化...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号