首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于结构元理论的Fuzzy数概念,研究了Fuzzy值函数微分及积分。在此基础上研究基于结构元线性生成的复Fuzzy值函数微分及积分,给出微分及积分的定义及求解定理,同时对复Fuzzy值函数的线性运算及加减运算之后的微分与积分公式进行探讨,给出了相应结论及证明。  相似文献   

2.
复模糊值函数理论在模糊控制中是广泛存在的,讨论复模糊值函数积分的性质有重要的理论和实际意义.本文首先介绍了模糊数的概念、运算规则及复模糊值函数的表达式(f)(x)=((f)1(x),(f)2(x)),在新的序关系的意义下给出复模糊值函数(f)(x)=((f)(x),(f)2 (x)) Riemann积分的定义.在此基础上给出了复模糊值函数的r-截集的概念,利用r-截集把复模糊值函数转化为区间值函数,用扩张原理给出了复模糊值函数积分表达式,并讨论了复模糊值函数积分的性质,得出了复模糊值函数积分具有区间可加性、不等式性、对实系数和复系数具有线性性质等结论.  相似文献   

3.
在复数域上的复模糊测度与复模糊值模糊测度的基础上,给出了复数域上的复区间值函数及复模糊值函数,进而定义了复数域上的复值模糊可测函数及复模糊值模糊可测函数,最终,定义了复数域上的复模糊值Choquet模糊积分,同时研究了该积分的一些基本性质.  相似文献   

4.
介绍复模糊值函数在光滑曲线上的积分概念,并对此积分的相关性质进行了深入讨论.  相似文献   

5.
复模糊值函数理论在模糊控制中是广泛存在的,讨论复模糊值函数积分的性质有重要的理论和实际意义。本文首先介绍了模糊数的概念、运算规则及复模糊值函数的表达式f=(x)=((x),(x)),在新的序关系的意义下给出复模糊值函数f=(x)=(1(x),2(x))Riemann积分的定义。在此基础上给出了复模糊值函数的r-截集的概念,利用r-截集把复模糊值函数转化为区间值函数,用扩张原理给出了复模糊值函数积分表达式,并讨论了复模糊值函数积分的性质,得出了复模糊值函数积分具有区间可加性、不等式性、对实系数和复系数具有线性性质等结论。  相似文献   

6.
针对模糊值函数黎曼积分应用模糊结构元理论进行研究.给出了限定运算的拓广定义并研究了其性质,利用模糊结构元理论,定义了模糊数值函数的积分,得到了模糊值函数的积分的解析表达式.研究结果表明:模糊数函数的积分具有限定可加性,不具有一般意义上的可加性,这是模糊积分与经典积分的关键区别.研究结论初步突破了对传统的模糊值函数积分的认识,同时运算比较简捷,解决了很多模糊值函数不可积和积分表述式难以解析表达的问题.  相似文献   

7.
为在模糊分析中给出有效的复Fuzzy值函数运算的表示形式,基于结构元理论生成的模糊数及模糊值函数的研究,得到了结构元线性生成的复Fuzzy值函数的线性运算、模及距离公式等定义。在此基础上,又给出了结构元生成的复Fuzzy值函数定义及隶属函数公式,特别是借助模糊值函数的加减法运算公式,提出了结构元理论表述的复Fuzzy值函数的加减法运算公式,并给予了证明。该研究是已有的复模糊理论研究的有益补充。  相似文献   

8.
模糊值函数与经典函数之间存在着一种必然的联系,因此研究模糊值函数的Newton—Leibniz公式也就具有了很重要的价值,原有的模糊值函数的Newton-Leibniz公式是在标准算子下给出的,其表现形式及实际应用不够灵活。为了体现该公式的灵活性,本文在受限算子下,利用模糊结构元理论给出了模糊值函数的Newton—Leibniz公式的一种新的表现形式,这种形式摒弃了对原函数的限制,使得该公式运用起来更加灵活简便,而且具有一定的实际应用价值,同时也体现了模糊结构元理论在简化模糊分析计算方面的优越性,整个公式的给出和证明过程及文章中的实例也说明了这一点。  相似文献   

9.
模糊数与模糊值函数的结构元线性表示   总被引:3,自引:5,他引:3  
为使模糊数和模糊函数运算更加简洁,在介绍模糊数与模糊值函数的结构元表示方法的基础上,给出了由模糊结构元任意表示的模糊数和模糊值函数转化为线性生成模糊数和模糊值函数的方法。由于在模糊结构元表示的模糊数和模糊值函数中,线性生成的模糊数和模糊值函数具有形式简单、计算容易的特点,这种方法解决了模糊数与模糊值函数运算的困难问题,具有现实的应用意义。文中还给出了两个计算实例。  相似文献   

10.
首先介绍复模糊集值测度与复模糊集值可测函数的概念及复模糊集值可测函数的性质,以及基于复模糊集值复模糊测度的复模糊集值积分概念及其基本性质;其次,研究了复模糊集值复模糊积分的收敛问题,得到了这种拓广到复模糊集值上的复模糊积分的单调收敛定理、法都定理、控制收敛定理等重要的收敛性定理.  相似文献   

11.
基于改进的实可测函数概念和新定义的模糊数值函数可测性概念,定义了复模糊集值复模糊可测函数概念,研究了复模糊集值复模糊测度空间上模糊复集值可测函数的性质、模糊复值积分及其收敛定理.  相似文献   

12.
模糊值函数在模糊数积分区间[A~,B~]上的积分是Ⅱ型模糊集。已经证明了Ⅱ型模糊集不是软代数,给出了Ⅱ型模糊集用Ⅰ型模糊集表示的表现与分解定理,进而证明了这个积分具有良好的代数性质。  相似文献   

13.
模糊值函数是定义在实数集R上取值于E1(所有的模糊数的集合)中的模糊数的函数,模糊值函数的积分是模糊分析学的一个重要组成部分.若把所有的关于y轴对称的模糊数都定义为零模糊数,则两个相同的模糊数的差为零,利用ar- ar 这样一个数值来描述模糊数的序关系,就可以得到关于纵向对称的模糊数都是等同的.在新的序关系意义下引进模糊值函数的Riemann积分的概念,并证明了这种模糊积分可积的必要条件.  相似文献   

14.
基于结构元的模糊值函数解析表示与微积分   总被引:10,自引:0,他引:10  
在已提出模糊结构元概念及模糊数与模糊值函数的结构元表示的基础上,进一步给出了模糊结构元生成的模糊值函数的一般表达形式,并得到了一般表达形式下的模糊值函数的连续性和微分、积分(黎曼意义下)的定义,它们与传统模糊分析中相应定义是等价的。  相似文献   

15.
16.
系统地介绍了模糊值函数分析学中结构元的表述方法,包括模糊结构元的概念、基于结构元的模糊数运算、模糊值函数解析表达形式、模糊值函数微积分的结构元表示、模糊级数的结构元表示等.模糊结构元理论不仅仅为模糊分析计算的解析表述提供了工具,同时也为模糊分析理论与应用的研究开创了一条新的途径.  相似文献   

17.
基于结构元方法的模糊值函数分析学表述理论   总被引:3,自引:0,他引:3  
系统地介绍了模糊值函数分析学中结构元的表述方法,包括模糊结构元的概念、基于结构元的模糊数运算、模糊值函数解析表达形式、模糊值函数微积分的结构元表示、模糊级数的结构元表示等.模糊结构元理论不仅仅为模糊分析计算的解析表述提供了工具,同时也为模糊分析理论与应用的研究开创了一条新的途径.  相似文献   

18.
本文利用[5]中定义的(G)模糊积分定义了一种集值模糊积分,并证明了Fatou引理和Lebesgue收敛定理  相似文献   

19.
给出的模糊复值积分、Sugeno型模糊复值积分概念,研究了其基本性质;将其作为一种新的算法应用于分类问题中,对应用中的细节问题进行研究,并用1个实例对其算法进行验证,结果显示该方法具有良好的分类效果。  相似文献   

20.
模糊复积分理论是模糊分析学的重大问题,它的研究和发展不仅具有重大的理论价值,而且对模糊复积分理论的应用研究,在模糊系统理论、计算机智能化领域等具有广阔的应用前景,因此,此项研究在理论和实践中具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号