首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用G ibbs自由能最小方法,研究了重整反应器的操作参数(温度、压力、反应气配比等)对CO2重整反应中CH4转化率和产物分布的影响,以及甲烷氧化反应与CO2重整反应间的能量耦合.研究结果表明:反应压力P不变(P=101.325 kPa),随温度升高CH4和CO2转化率增大,在900 K左右产生的H2O(g)的量达到极大值,在1 200 K以上CH4转化率接近100%;反应温度T不变(T=973 K),随压力升高CH4和CO2转化率降低,H2O(g)的选择性略微增加;T=973 K,P=101.325 kPa,原料气中nCH4/nCO2(摩尔比)从0.65增加到2.0时,CH4转化率从85%降到45%,nH2/nCO(摩尔比)从0.77增加到0.95;反应器中加入适量O2,可以提供CO2重整反应所需的能量,同时可调节产物中CO与H2的摩尔比.  相似文献   

2.
采用微型固定床流动反应装置研究了在CaO-La2O3-NiO/γ-Al2O3催化剂上添加CaO对甲烷部分氧化制合成气的影响,结果表明,添加CaO后,催化剂活性明显提高,引发温度降低,CH4的转化率和CO的选择性升高,1%CaO-2%La-12%Ni/γ-Al2O3是较适宜的催化剂在中低温区,随反应温度升高,CH4的转化率和CO的选择性升高,催化反应的适宜温度为600℃-700℃。  相似文献   

3.
煤制天然气符合煤炭清洁利用的发展要求,其中合成气甲烷化是关键步骤,而合成气甲烷化催化剂则是关键的核心。为了探索高效、稳定的合成气甲烷化催化剂,本文采用过量浸渍法制取镍基催化剂,并采用离子交换法在载体MCM-41加入碱土金属Ca2+、Mg2+探索对催化剂活性的影响。研究结果表明:在n(H2)∶n(CO)=3∶1、反应压力1.5 MPa、反应温度350℃及质量空速30000 h-1的反应条件下,碱土改性的Ni/Mg O-MCM-41催化剂CO的转化率为99%,催化剂选择性达到90.4%;在250℃时碱土改性催化剂表现出良好的低温活性,比Ni/MCM-41的活性高60%;碱土改性催化剂高温活性稳定,在550℃时活性测试未出现明显下降。经过一系列表征和分析可知:镍颗粒细小的分布在载体表面,与载体有强相互作用并且碱土助剂Ca2+、Mg2+阻止了镍颗粒的烧结。  相似文献   

4.
采用微型固定床流动反应装置研究了在La2 O3 NiO/γ Al2 O3 催化剂上添加CaO对甲烷部分氧化制合成气的影响 .结果表明 ,添加CaO后 ,催化剂活性明显提高 ,引发温度降低 ,CH4的转化率和CO的选择性升高 ,1 ?O 2 %La 1 2 %Ni/γ Al2 O3 是较适宜的催化剂在中低温区 ,随反应温度升高 ,CH4的转化率和CO的选择性升高 ,催化反应的适宜温度为 6 0 0℃~70 0℃ .  相似文献   

5.
采用常压固定床反应器,考察了负载型Co基系列催化剂的焙烧温度、钴含量以及还原温度对甲烷二氧化碳重整过程的影响;筛选出适宜的工艺条件。结果表明,7%Co/BaTiO3催化剂在反应温度为700℃,压力为0.1 MPa,nCO2∶nCH4为1∶1,气相空速GHSV为12 000 h-1的条件下表现出相对良好的催化活性,可得到87.68%的CH4转化率、75.37%的CO选择性和68.31%的H2收率。  相似文献   

6.
加压条件下两段法天然气催化氧化制合成气催化剂的改进   总被引:5,自引:0,他引:5  
以α-Al2O3为载体,在加压条件下,采用初湿浸渍法制备了镧助Ni/α-Al2O3部分氧化-重整催化剂和负载型钙钛矿型LCFM/α-Al2O3燃烧催化剂,考察了反应温度、压力、CH4与氧配比等因素对两段法甲烷催化氧化制合成气性能的影响。结果表明,在两段法催化氧化制合成气工艺中采用LCFM/α-Al2O3燃烧催化剂和镧助Ni/α-Al2O3部分氧化/重整催化剂,能够消除反应热点,降低反应的危险性。当温度为1000℃及体系压力为2MPa时,甲烷转化率约为85%,CO和H2的选择性接近90%,与热力学平衡值十分接近;增加原料气中的氧含量,可以提高甲烷的转化率,但CO和H2选择性随之降低。  相似文献   

7.
以α Al2O3为载体,在加压条件下,采用初湿浸渍法制备了镧助Ni/α Al2O3部分氧化重整催化剂和负载型钙钛矿型LCFM/α Al2O3燃烧催化剂,考察了反应温度、压力、CH4与氧配比等因素对两段法甲烷催化氧化制合成气性能的影响。结果表明,在两段法催化氧化制合成气工艺中采用LCFM/α Al2O3燃烧催化剂和镧助Ni/α Al2O3部分氧化/重整催化剂,能够消除反应热点,降低反应的危险性。当温度为1000℃及体系压力为2MPa时,甲烷转化率约为85%,CO和H2的选择性接近90%,与热力学平衡值十分接近;增加原料气中的氧含量,可以提高甲烷的转化率,但CO和H2选择性随之降低。  相似文献   

8.
通过对某工业熔铁催化剂的分析,发现该催化剂的物相主要为Wusite-FeO和C-Carbon。考察了该催化剂在固定床积分反应器中费托合成反应。研究了不同温度,H2/CO进料摩尔比和空间速度下该催化剂的催化特性。发现当压力2.5Mpa,空速1600h^-1,H2/CO进料摩尔比为3/2,温度260~300℃时,随温度的升高,CO、H2的转化率和CH4的选择性增大,而CO2选择性减小;温度290℃,压力2.5Mpa,空速1600h^-1,H2/CO进料摩尔比在0.5~1.5时,随H2/CO进料比增加,CO转化率,H2/CO摩尔利用比和CH4选择性都增加,但H2转化率和CO2选择性减小;空速对该熔铁催化剂的催化特性的影响不显著。  相似文献   

9.
在常压下 ,以氧气为氧化剂 ,用两种不同制法的载体分别制备催化剂 (MoO3 ·MxOy/SiO2 ) ,用于甲烷部分氧化反应 ,对比结果表明用醇盐法所制SiO2 (ZSiO2 )做成的催化剂比用市售SiO2 (QSiO2 )做成的催化剂反应活性和选择性好 ,助剂V2 O5加入提高了CH4 转化率和CO2 ,CO选择性 ,降低了HCHO产率和选择性 ,B2 O3 加入提高了CH4 转化率 ,HCHO产率和其选择性 ,降低了CO2 ,CO选择性 ,TPR结果表明载体ZSiO3 的应用减少了载体表面弱酸性位 ,但助剂V2 O5和B2 O3 的加入使MoO3 与ZSiO2 发生了不同的相互作用 ,从而影响了催化剂表面的活性氧物种 ;NH3 TPD结果表明载体ZSiO3 的应用及助剂B2 O3 的加入增加了催化剂表面弱酸性位  相似文献   

10.
合成具有抗烧结和抗积碳性能的Ni基催化剂是CO甲烷化催化剂设计的难点,而利用催化剂载体特定的结构对活性金属纳米颗粒的空间限域效应是提高镍基催化剂活性和稳定性的有效策略。以一步法制备的Ni/UiO-66为前驱体,经焙烧和还原,获得了一系列具有网状结构的Ni/ZrO_2催化剂。针对反应强放热的特点,三维网状结构在稳定镍颗粒的同时,三维空隙结构能够有效移除反应中的局部热点,并且金属Ni与载体ZrO_2紧密的界面结构有效地提升了催化剂的活性和稳定性。结果表明,一步法制备的Ni/ZrO_2催化剂的反应活性和稳定性均优于浸渍法制备的Ni/t-ZrO_2催化剂,在压力1 MPa,t=325℃,WHSV=15 000 mL·g~(-1)·min~(-1)条件下,Ni/ZrO_2-N催化剂的CO转化率达到86%,反应120 h后催化剂网状结构保留完好,反应活性和选择性保持稳定。CO甲烷化结果表明,网状结构催化剂的设计策略可以拓展至对其他活性金属进行限域以提升其反应活性和稳定性。  相似文献   

11.
以偏铝酸钠和硝酸镍为原料,采用均匀沉淀法制备出Ni质量分数为40%的Ni-Al2O3催化剂,考察了不同焙烧温度(350,450,550,650,750℃)下制备的催化剂在CO甲烷化反应中的催化活性,使用TG-DTG、N2吸附、XRD、H2-TPR和H2化学吸附分析了催化剂的织构、晶相和活性金属的化学形态。结果表明,随着焙烧温度的上升,Ni与Al2O3载体之间的相互作用逐渐变强,形成大量的NiAl2O4,在450℃焙烧的催化剂活性最佳,在压力1.0 MPa、空速20 000mL/(g·h)和温度220℃的反应条件下,CO转化率达到99%以上;随着焙烧温度的增加,催化剂活性与镍的活性比表面积变化趋势一致,先增加、后降低,表明催化剂镍的活性比表面积影响其活性。  相似文献   

12.
研究了冷等离子体与BaO/γ-Al2O3催化剂协同作用下CO2氧化CH4制C2烃反应.结果表明:等离子体与催化剂协同作用效果优于单纯等离子体活化或单纯催化活化;CH4和CO2转化率及C2烃选择性和收率与催化剂负载量、体系能量密度有关;BaO/γ-Al2O3催化剂焙烧温度在500~800℃对催化剂活性影响不大;当体系能量密度为1300kJ/mol时,CH4转化率26.4%,C2烃选择性63.3%,C2烃收率达16.7%.  相似文献   

13.
CH4-CO2的高温半焦重整反应实验   总被引:1,自引:0,他引:1  
以自制的半焦作为催化剂,研究了在小型的固定床中CH4和CO2的高温重整.实验表明,CH4,CO2在不同的催化剂和不同的温度下有不同的转化率,而且温度越高,CH4,CO2的转化率越高.在采用自制半焦制得的催化剂、温度为900℃且无N2作为平衡气的情况下,CO2和CH4的转化率分别为69.1%,28.9%,在1 050℃时,有N2其转化率则高达95.2%,91.2%.若没有催化剂存在,CO2和CH4转化率明显低于有催化剂存在的情况,如在1 000℃时,有催化剂下CO2和CH4的转化率分别为93.5%,76.6%,无催化剂时,转化率仅为32.0%,11.9%;加入适量的N2,可有效提高CH4的转化率.本实验证明了自制半焦催化剂能满足CH4-CO2高温重整反应的需要.  相似文献   

14.
文章采用共沉淀法制得铈、锆掺杂氧化铝载体,以浸渍法负载活性组分镍得到Ni/CeO2-ZrO2-Al2O3催化剂,改善了CH4三重整反应的活性和稳定性。用EDS、XRD、BET、H2-TPR分别表征催化剂的组成、物相、比表面积和还原活性。考察了原料气组成n(CH4)∶n(CO2)∶n(H2O)∶n(O2)=1∶0.5∶0.5∶0.1时,催化剂在750℃、0.1MPa下对CH4三重整的稳定性及积碳性能。结果表明:ZrO2掺杂提高了催化剂的活性和稳定性;CeO2掺杂降低了Ni基催化剂的还原活化温度,且催化剂的稳定性更好;Al/Zr、Ce/Al的原子比分别为8和0.015的10%Ni/CeO2-ZrO2-Al2O3对CH4三重整的性能最好;反应100h后,催化剂的CH4转化率仍然大于87%,CO2转化率大于89%,积碳量仅为3.8%,催化剂的使用寿命大为延长。  相似文献   

15.
用Sc2O3作为促进剂,研发出一种Sc2O3掺杂的高效新型Ni-ZrO2基催化剂,该催化剂对CO和CO2共甲烷化制合成天然气(SNG)显示出高的活性和优异的热稳定性.在组成经优化的Ni6Zr3Sc1催化剂上,0.1 MPa,573K,V(H2)∶V(CO)∶V(CO2)∶V(N2)=75∶15∶5∶5,出口空速GHSV=40 000mL/(h·g)的反应条件下,在反应开始之后的20~332h的反应过程中,CO和CO2的转化率一直分别保持在100%和85%的高水平,产物甲烷的选择性一直保持在100%.耐热试验结果显示,在973K下经历24h甲烷化反应、而后降至573K的Ni6Zr3Sc1催化剂试样上,(CO+CO2)的总转化率仍能稳定地保持在80.2%的水平;而不含Sc2O3的原基质催化剂(Ni6Zr4)在经历相同耐热试验过程之后的(CO+CO2)总转化率骤降至2.7%,暗示其因烧结而失活.催化剂的表征结果证实,可观量的Sc3+溶解入ZrO2晶格导致具有c-ZrO2结构的单一c-(Zr-Sc)Oy相的生成并使其稳定化,这类c-(Zr-Sc)Oy相与Ni6Zr3Sc1催化剂的高活性,尤其与优良的热稳定性,密切相关.  相似文献   

16.
将4Ni-2Ru/ZrO2双金属催化剂均匀涂布到微通道反应器中,运用CO选择性甲烷化方法来净化富氢重整气中的CO。考察了焙烧温度、催化剂的涂布方法和CTAB/Zr的比例对催化剂性能的影响。实验结果表明:CTAB/Zr=0.35、350 ℃焙烧所制备的催化剂表现出良好的低温活性。反应温度240 ℃时可将CO的出口浓度降低到11 ppm,在温度240~300 ℃、空速13000~20000 h-1的范围内CO的转化率都可达99%以上,CO2的转化率不超过7%。  相似文献   

17.
通过对Ni基甲烷化催化剂的不同复合载体进行研究发现:与纯γ-Al2O3载体相比,由ZrO2,MgO,SiO2,TiO2与γ-Al2O3复合形成的复合载体,均对CO甲烷化催化性能有一定影响,而以γ-Al2O3/MgO,γ-Al2O3/SiO2两种复合型载体对CO甲烷化活性和选择性促进最为明显。同时,γ-Al2O3/MgO复合载体表现出良好的热稳定性,催化剂活性衰减小。  相似文献   

18.
研究了甲烷和发烟硫酸以V2O5为催化剂合成甲醇的反应动力学,考察了反应温度、反应初始压力和催化剂用量对甲烷转化率和目的产物收率的影响。结果表明,高温有利于甲烷转化率的提高,但过高的温度会导致目的产物收率降低;甲烷转化率随着初始反应压力的增大而提高,而甲醇收率随压力的变化趋势则是先提高,后趋于平缓;随着V2O5用量的增加,甲烷转化率增大,但当V2O5的添加量超过0.014 mol时,V2O5用量对甲醇收率的影响变得不显著。  相似文献   

19.
以萘为焦油模型化合物,考察了镍基整体式催化剂上生物质粗燃气干重整和临氧重整的性能。镍基重整催化剂表现出良好的催化重整活性,焦油全部转化为H2、CO及微量轻质组分。在750℃下连续反应108h,未检测到反应器压降变化和CH4与焦油转化率下降,整体式催化剂表现出较好的活性和稳定性。  相似文献   

20.
采用CFD方法研究填充床反应器内CO2/CH4重整反应的热质传递与反应特性。首先考察3种不同N(N=dtube/dball)下填充床模型在无反应时的流动与传热特性,然后在耦合CO2/CH4重整反应后,比较有无耦合反应情况下的温度分布及N对反应转化率的影响。研究结果表明,本文模型与经验公式吻合较好,表明模型合理。无反应时,不同N对CO2/CH4重整反应的流动与传热特性有较大影响,管内传热速率及阻力系数随着N的增加而增加,管内阻力特性主要受填充床催化剂的形体阻力支配,当N=2时,填充床在研究的大多数雷诺数范围内具有最好的传热综合性能。耦合反应时,N对CO2/CH4重整反应的转化率也有较大影响,N=2.16时,甲烷转化率最大。N=1.67时,CO2/CH4在催化剂表面的反应转化率沿轴向随着温度的升高而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号