首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
水平管道内甲烷爆炸压力传播实验   总被引:1,自引:0,他引:1  
借助自行研制的瓦斯爆炸水平管道模拟巷道,通过实验研究低浓度瓦斯爆炸特征参数及爆炸压力在水平管道内的传播规律。结果表明:爆炸极限范围内的甲烷气体,在燃爆腔体内(点火段附近)爆炸超压随甲烷浓度的增大呈先增大后减小的趋势;甲烷体积分数为9.4%时,爆炸压力最大,为0.165670MPa,对应时间为76.8ms。在燃爆腔体一扩散管路内,气体爆炸压力峰值呈波动性变化;距点火段3600mm处、体积分数为9.4%的甲烷气体爆炸压力最大,爆炸超压为0.181228MPa。实验中甲烷爆炸超压的体积分数为9.4%。该研究为管道及煤矿巷道瓦斯爆炸事故分析提供了参考。  相似文献   

2.
为了研究煤矿井下瓦斯爆炸火焰在分岔巷道内的传播规律,自制45°分岔管道实验装置开展甲烷体积分数为9.5%的瓦斯爆炸火焰传播实验,用Fluent 16.0软件模拟分岔管道内瓦斯爆炸火焰传播过程。对比分析实验数据与模拟结果,得到分岔管道瓦斯爆炸火焰传播的变化规律。研究结果表明:1)分岔管道内瓦斯爆炸火焰在分岔处产生漩涡,加速管道内爆炸火焰湍流化,火焰冲击反射现象明显;2)分岔支管截面处爆炸火焰温度、传播速度、冲击波超压与离子电流峰值最大;3)瓦斯爆炸火焰传播的模拟结果与实验数据在数值上存在一定差异,但各参量总体变化趋势相同。研究结果为深入认识井下瓦斯爆炸传播机制和在巷道分岔处采取瓦斯爆炸火焰传播抑制措施提供一定参考。  相似文献   

3.
为有效抑制瓦斯爆炸冲击波及火焰传播,构建大尺度圆形管道实验装置,对瓦斯预混爆炸过程中泡沫陶瓷对冲击波和火焰传播抑制特性进行研究.结果表明:泡沫陶瓷能够吸收瓦斯爆炸冲击波能量,对火焰和冲击波传播抑制效果明显,泡沫陶瓷挡板厚度及设置层数、位置是典型影响因素.挡板设置位置距点火端距离十分重要,其临界值应为起爆期间火焰传播速度达到最大值位置以内,进而实现对瓦斯爆炸传播与发展的有效抑制.对比双层和单层挡板布置的实验结果,双层布置时冲击波最大超压下降更快.但是,挡板厚度的影响并不明显.设置厚度为50 mm或30 mm的挡板时,测得最大超压的沿程衰减趋势一致,大小也很相近.  相似文献   

4.
利用AutoReaGas软件对封闭的长直管道内瓦斯爆炸进行了数值模拟,研究了瓦斯的浓度对爆炸超压影响的规律. 在此基础上,进一步研究了障碍物个数和阻塞比对瓦斯爆炸超压和火焰传播速度的影响. 数值结果表明,在无障碍物的管道中,当瓦斯浓度为化学当量浓度时,爆炸超压值最大;在带有障碍物的管道中,火焰速度值随着障碍物数量的增加先增大后减小;当障碍物个数一定时,最大爆炸超压和火焰速度随阻塞比增大而增加.  相似文献   

5.
为有效抑制煤矿瓦斯爆炸产生的冲击波,自行设计、搭建了瓦斯爆炸圆形大尺度管道实验系统,对8%浓度的瓦斯预混爆炸过程中多孔泡沫陶瓷对冲击波的抑制特性进行了研究.研究结果表明:泡沫陶瓷的多孔结构通过弹性形变和塑性形变吸收瓦斯预混爆燃的冲击波能量,实现抑制、衰减冲击波的效果.泡沫陶瓷层数、厚度和位置对抑制瓦斯爆炸传播均有一定的影响,其中层数影响尤为显著,双层布置时爆炸冲击最大超压下降速度更快、梯度更大;设置位置距点火端的距离3 m至4 m的范围内可以成功抑制爆炸的发展和演化;泡沫陶瓷厚度对爆炸冲击波趋势影响并不明显,而对最大超压数值有影响,相比50 mm厚,30 mm厚的泡沫陶瓷最大超压衰减率更大,抑爆效果更好.  相似文献   

6.
为评价瓦斯空气煤粉混合爆炸危险性大小,探究爆炸机理,方便相关事故原因分析,利用水平透明玻璃式爆炸管道,探究了甲烷浓度、煤粉粒径对复合爆炸中火焰传播速度的影响。实验结果表明:随着甲烷浓度的增大,火焰传播速度先增大后减小,在接近爆炸上限浓度和爆炸下限浓度时达到最大值;随着煤粉粒径的增大,火焰传播速度逐渐变小,最大火焰传播速度也变小,甲烷浓度为10%,煤粉粒径为30μm时火焰传播速度最大。  相似文献   

7.
为了研究超细水雾对甲烷-煤尘混合爆炸过程的作用规律,在20 L长方体爆炸装置中进行了抑爆实验.同时基于甲烷气体、雾滴颗粒、煤尘颗粒在受限空间内的蒸发、脱挥发、燃烧过程,建立了超细水雾抑制甲烷-煤尘混合爆炸的数学模型.同实验进行对比可知,数值模拟得到的爆炸压力可准确反映实际爆炸过程.结果表明,超细水雾的加入改变了爆炸的传播规律.与无抑制的甲烷-煤尘混合爆炸相比,加入超细水雾降低了已燃区的气相温度及煤尘颗粒温度,并推迟了火焰阵面沿轴向的传播过程.煤尘颗粒温度分布表明,超细水雾在推迟煤尘颗粒升温过程的同时,反应区煤尘颗粒的中位温度也明显降低.随着超细水雾浓度的不断增加,其对甲烷-煤尘混合爆炸的气相燃烧过程和颗粒脱挥发及燃烧过程的抑制效果也不断增强.研究可为工业生产中甲烷-煤尘爆炸强度预测和水雾抑制提供参考.  相似文献   

8.
掘进巷道瓦斯爆炸后巷道内空气温度时空分布   总被引:2,自引:0,他引:2  
为了得出煤矿井下独头掘进巷道发生瓦斯爆炸后形成的空气热环境,对爆炸后巷道内部空气温度的时空分布规律进行了研究。基于气体方程、爆炸波的动力学和功能原理建立了爆炸产生的超压和温度之间的关系式,通过对超压模型的建立和求解,以及结合爆炸实验数据,得出了较为可靠的爆炸后瞬间巷道内空气温度随传播距离的分布规律。基于瓦斯爆炸发生后伴随有非定常、质量和热量传递等物理现象,建立质量、动量、能量控制方程组,将所求得的爆炸后瞬间巷道内空气温度作为一种初始条件,应用RNG kε数学模型进行求解。得到了不同体积浓度瓦斯爆炸后巷道内部空气温度的时空分布规律。研究瓦斯爆炸后巷道内部空气温度时空变化规律对于明确瓦斯爆炸诱发次生火灾或次生爆炸的机理具有重要意义,可为制定相关的灾防措施提供帮助。  相似文献   

9.
为探究埋地输气管道爆炸驱动下的路面动力响应规律,利用ANSYS软件模拟仿真天然气管道爆炸过程,通过改变管道埋深、壁厚、敷设夹角三个主要因素得到道路不同点处超压峰值,与安全评定准则相对比得出人和物安全指数。研究结果表明:管道埋深对道路超压峰值影响显著,在单一变量改变下,道路超压峰值随着埋深增加而减小,埋深超过5m时,爆炸冲击波不足以破坏路面且对人和建筑物造成影响;管道壁厚改变时道路超压峰值呈现“增加-减少”趋势,壁厚为15mm时,超压峰值达到顶峰,当壁厚达到20mm后,爆炸冲击波不足以对人和物形成伤害;管道敷设夹角改变时道路超压峰值呈现“减小”的趋势,管道爆炸点正上方处无安全敷设角度,当敷设角度为60°时,道路其余位置均处于安全范围。  相似文献   

10.
在实验研究的基础上,分析了结构异常管路对瓦斯爆炸传播特性的重要影响。研究结果表明,在拐弯处的瓦斯爆炸传播过程是一个压力波、火焰、复杂流动场相互作用的过程,压力波超压、火焰传播速度迅速增大,对拐弯处的壁面破坏特别严重。弯管角度对瓦斯爆炸传播特性有很大的影响,瓦斯爆炸通过不同角度的弯管后,火焰传播速度和压力波超压值都有不同程度的变化。管道拐弯既增加了燃烧区的湍流度而加速燃烧产生能量以推动加速传播,同时也因为拐弯而增大了总阻力和热量向壁面的传递,弯角处膨胀波也会抑制瓦斯爆炸的传播。管道拐弯对瓦斯爆炸传播特性的影响取决于抑制因素和激励因素的综合作用。  相似文献   

11.
应用计算流体动力学软件AutoreaGas定量研究了截面为3 m×3 m、长25 m的一段密闭巷道中瓦斯爆炸超压场. 通过数值模拟手段分析了障碍物的形状和大小对密闭巷道中瓦斯爆炸超压的影响,确定了形成最大爆炸超压时巷道内的最佳阻塞比,并在最佳阻塞比的障碍物填装条件下,研究了不同瓦斯浓度对爆炸超压的影响. 结果表明,瓦斯空气混合物爆炸超压随着阻塞比的增大呈现先增大后减小的趋势,在7.5%、8.5%、9.5%、10.5%、11.5% 5种瓦斯浓度下,爆炸超压随着浓度的增大呈现先增大后减小的趋势,当阻塞比为26.6%时,爆炸超压在9.5%时达到峰值.  相似文献   

12.
为了研究巷道内瓦斯爆炸冲击波对巷道壁面结构的损伤破坏,利用ANSYS/LS-DYNA建立巷道瓦斯爆炸物理模型和数学模型,对掘进巷道瓦斯爆炸冲击波破坏特性进行数值模拟研究。结果表明:在巷道壁面边缘位置和中心位置超压测值较大,其壁面损伤相对更为严重;冲击波在巷道轴向壁面也会出现反射和叠加,导致整体超压峰值上下振荡波动;瓦斯爆炸后冲击波向开口方向传播,瓦斯区壁面受到的载荷最大,并逐渐向空气区加载扩散;随着爆炸冲击波能量衰减,而应力持续加载在壁面结构,压力集中对壁面结构施加静态破坏,最后超过其承受能力,导致巷道失稳破坏。研究结果可为优化巷道结构的设计提供理论参考。  相似文献   

13.
针对掘进工作面不同强度瓦斯爆炸传播差异性的问题.用一端开口的半封闭爆炸试验装置,通过改变瓦斯聚集长度模拟爆炸点源和线源,研究瓦斯弱爆过程中超压的变化规律.实验结果表明:半封闭受限空间内瓦斯弱爆下,爆炸超压在燃烧区呈非线性变化,先上升后下降,并随传播距离增加而逐步衰减直至消失.爆炸实验结果与借助爆炸力学理论构建的弱爆理论模型相比,冲击波在一般空气区内的传播变化趋势与理论解吻合,理论模型不适用于瓦斯燃烧区.研究结果为防治瓦斯爆炸及事故勘验提供了技术和理论支持.  相似文献   

14.
瓦斯煤尘爆炸传播数值仿真系统研究   总被引:1,自引:0,他引:1  
以连续相、燃烧、颗粒相数理方程建立瓦斯煤尘爆炸传播数理模型,并应用连续相、颗粒相计算方法,依据大型巷道瓦斯爆炸、瓦斯煤尘爆炸传播实验数据,借助普遍应用的流场模拟平台,开发了瓦斯、煤尘爆炸数值仿真系统。该系统可以有效地模拟煤矿瓦斯、煤尘的爆炸事故过程,对瓦斯爆炸的爆燃转爆轰、煤尘是否参与爆炸、爆炸冲击传播速度、衰减规律以及爆炸灾害的波及范围都能进行较准确的模拟。  相似文献   

15.
半封闭空间瓦斯爆炸冲击波传播距离研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为揭示瓦斯在强爆和弱爆情况下冲击波超压变化规律,利用一维爆炸物理模型和爆炸理论,构建了冲击波超压随距离变化的数学模型,并用一端开口的半封闭爆炸试验装置,在保持瓦斯浓度和其他条件不变,仅改变点火能量大小实现了瓦斯爆燃和爆轰,验证理论求解.结果表明:半封闭受限空间内,爆燃情况下火焰传播速度要远小于爆轰条件下火焰传播速度,爆燃火焰传播速度为亚音速,爆轰为超音速;爆轰与爆燃的冲击波超压的理论解都小于实验值,但整个传播变化趋势基本一致;极强冲击波最大超压值与传播距离成反比,极弱冲击波最大超压值与传播距离的平方根成反比;爆燃和爆轰冲击波在燃烧区内的传播变化趋势与理论解基本吻合.研究结果为防治瓦斯爆炸破坏及爆炸事故灾害勘验提供了技术和理论支持.  相似文献   

16.
泡沫陶瓷对瓦斯爆炸火焰传播的影响   总被引:9,自引:2,他引:7  
为了有效抑制煤矿瓦斯爆炸的冲击波,设计加工了断面为200 mm×200 mm的方形爆炸实验管道,实验研究无障碍物条件下瓦斯爆炸火焰传播规律和泡沫陶瓷对瓦斯爆炸火焰传播的影响,并采用高速摄影系统对火焰的传播过程进行了拍摄.实验结果表明,管道内瓦斯爆炸火焰的传播速度和结构不稳定;泡沫陶瓷可以抑制火焰的传播,起到淬熄火焰的作用.研究结果对于防治煤矿瓦斯爆炸具有重要的使用价值和理论意义.  相似文献   

17.
掘进巷道瓦斯爆炸数值及实验分析   总被引:2,自引:0,他引:2  
应用爆炸理论和质量、动量、能量守恒定律,针对掘进巷道瓦斯爆炸建立了物理模型和数学模型,在此基础上分析了掘进巷道瓦斯爆炸的条件和可能性.运用Autoreagas数值分析系统对掘进巷道置障条件下瓦斯与空气混合气体的燃烧爆炸进行分析和研究.结果表明,障碍物的存在使得密度升高的幅度大大增加,混合气体超压加大,激波波动剧烈,温度、混合气体流动速度以及爆炸过程中燃烧速度产生不规则波动、振荡和变化.实验分析和对比表明,瓦斯聚积量大,则发生瓦斯爆炸后产生的超压将大幅度升高,平均超压将升高到聚积量小的超压的2倍,最大超压则升高到聚积量小的超压的2.5倍.通过对照分析,数值计算的数据与实验获得的数据比较接近,证明数值模拟的合理性.  相似文献   

18.
基于爆炸实验与数值模拟,对爆炸载荷作用下隔爆墙后的冲击波绕射和超压分布规律进行了研究.首先,开展了隔爆墙对爆炸冲击波隔离效应的实验,得到了有/无隔爆墙条件下相同爆距处的冲击波超压时程曲线.在此基础上,采用流体动力学软件AUTODYN对爆炸冲击波的绕射过程进行了数值仿真,通过与实验结果的对比验证了模型的有效性.结合数值模拟和量纲分析,得到了不同爆炸当量、爆距、墙高等参数下隔爆墙后不同区域的冲击波超压分布规律,并给出了隔爆墙后近地面超压峰值的工程计算公式,为隔爆墙的设计和安全评估提供了依据.   相似文献   

19.
细水雾抑制煤尘与瓦斯爆炸实验   总被引:1,自引:0,他引:1  
搭建小尺寸细水雾实验平台,用相应管道模拟矿井环境.在阐明煤尘与瓦斯爆炸传播机理的基础上,研究细水雾抑制管道混合物爆炸的有效性,并对其做定性定量的分析研究.研究发现:在细水雾作用下,煤尘与瓦斯的火焰传播速度会相应减小、所测火焰温度有所降低.当混合物爆炸的威力较大时,细水雾对其相关参数影响较弱,应适当增加压力,改变细水雾的物理化学抑制作用,增强灭火特性.实验结论:细水雾抑制煤尘与瓦斯爆炸的研究为煤矿抑爆装置的研制和安装提供了技术支撑.  相似文献   

20.
摘 要:为了研究炸药在密闭空间中爆炸超压特性,将TNT作为典型炸药,在容积为500L的密闭爆炸罐中进行空中爆炸试验,测量了爆炸罐内超压随时间的变化曲线,提出了准静压形成时间的概念。结果表明,密闭空间中的超压是由冲击波超压和准静压组成,试验药量增大,冲击波峰值超压和准静压增大,准静压形成时间减小;传感器位于管道中将无法测量冲击波峰值超压,但是能够准确地测量准静压;环境中的氧气量增大,准静压增大,说明爆轰产物发生了后燃烧,提高环境中的氧气含量能够提高爆轰产物反应率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号