首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T cells recognize foreign protein antigens in the form of peptide fragments bound tightly to the outer aspect of molecules encoded by the major histocompatibility complex (MHC). Most of the amino-acid differences that distinguish MHC allelic variants line the peptide-binding cleft, and different allelic forms of MHC molecules bind distinct peptides. It has been demonstrated that peptide-binding to MHC class I involves anchor residues in certain positions and that antigenic peptides associated with MHC class I exhibit allele-specific structural motifs. We have previously reported an analysis of MHC class II-associated peptide sequences. Here we extend this analysis and show that certain amino-acid residues occur at particular positions in the sequence of peptides binding to a given MHC class II molecule. These sequence motifs require the amino terminus to be shifted one or two positions to obtain alignment; such shifts occur naturally for a single peptide sequence without qualitatively altering CD4 T-cell recognition.  相似文献   

2.
Physical association between MHC class I molecules and immunogenic peptides   总被引:5,自引:0,他引:5  
Antigenic peptides are presented to T lymphocytes by major histocompatibility complex (MHC) molecules. The binding of peptides to MHC class II molecules has been demonstrated directly, and is found to correlate with the ability of specific class II alleles to restrict the T-cell response to specific peptides. By comparison, a direct demonstration of a physical association between antigenic peptides and MHC class I molecules has proved difficult. A recent report shows that it is possible, however, and the three-dimensional structure of a class I MHC molecule illustrates the site where such binding must occur. Here we describe a simple assay which measures the binding of radiolabelled MHC class I molecules to peptides bound to a solid phase support. We find that class I molecules bind specifically to peptides known to be antigenic for class I-restricted cytotoxic T lymphocytes. Peptides which are recognized by cytotoxic T lymphocytes bind not only to the restricting MHC class I molecule but also to other class I molecules. Our results suggest that quantitative differences in the peptide/MHC class I interaction may influence the-pattern of MHC restriction observed in vivo.  相似文献   

3.
P A Roche  P Cresswell 《Nature》1990,345(6276):615-618
Class II major histocompatibility complex (MHC) molecules are heterodimeric cell surface glycoproteins which bind and present immunogenic peptides to T lymphocytes. Such peptides are normally derived from protein antigens internalized and proteolytically degraded by the antigen-presenting cell. Class I MHC molecules also bind immunogenic peptides, but these are derived from proteins synthesized within the target cell. Whereas class I molecules seem to bind peptides in the endoplasmic reticulum, class II molecules are thought to bind peptides late in transport. Intracellular class II molecules associate in the endoplasmic reticulum with a third glycoprotein, the invariant (I) chain, which is proteolytically removed before cell surface expression of the alpha beta class II heterodimer. It has been suggested that the I chain prevents peptides from associating with class II molecules early in transport. Preventing such binding until the class II molecules enter an endosomal compartment could maintain the functional dichotomy between class I and class II MHC molecules. We have examined the ability of I chain-associated HLA-DR5 molecules to bind a well characterized influenza haemagglutinin-derived peptide (HAp). The results show that whereas mature HLA-DR alpha beta dimers effectively bind this peptide, the I chain-associated form does not.  相似文献   

4.
Sequence analysis of peptides bound to MHC class II molecules.   总被引:38,自引:0,他引:38  
CD4 T cells recognize peptide fragments of foreign proteins bound to self class II molecules of the major histocompatibility complex (MHC). Naturally processed peptide fragments bound to MHC class II molecules are peptides of 13-17 amino acids which appear to be precessively truncated from the carboxy terminus, perhaps after binding to the MHC class II molecule. The finding of predominant self peptides has interesting implications for antigen processing and self-non-self discrimination.  相似文献   

5.
Hanada K  Yewdell JW  Yang JC 《Nature》2004,427(6971):252-256
Cytotoxic T lymphocytes (CTLs) detect and destroy cells displaying class I molecules of the major histocompatibility complex (MHC) that present oligopeptides derived from aberrant self or foreign proteins. Most class I peptide ligands are created from proteins that are degraded by proteasomes and transported, by the transporter associated with antigen processing, from the cytosol into the endoplasmic reticulum, where peptides bind MHC class I molecules and are conveyed to the cell surface. C2 CTLs, cloned from human CTLs infiltrating a renal cell carcinoma, kill cancer cells overexpressing fibroblast growth factor-5 (FGF-5). Here we show that C2 cells recognize human leukocyte antigen-A3 MHC class I molecules presenting a nine-residue FGF-5 peptide generated by protein splicing. This process, previously described strictly in plants and unicellular organisms, entails post-translational excision of a polypeptide segment followed by ligation of the newly liberated carboxy-terminal and amino-terminal residues. The occurrence of protein splicing in vertebrates has important implications for the complexity of the vertebrate proteome and for the immune recognition of self and foreign peptides.  相似文献   

6.
HLA-A2 peptides can regulate cytolysis by human allogeneic T lymphocytes   总被引:3,自引:0,他引:3  
The class-I and class-II molecules encoded by the major histocompatibility complex (MHC) are homologous proteins which allow cytotoxic and helper T cells to recognize foreign antigens. Recent studies have shown that the form of the antigen recognized by T cells is generally not a native protein but rather a short peptide fragment and that class-II molecules specifically bind antigenic peptides. Furthermore, the three-dimensional structure of the human MHC class-I molecule, HLA-A2, is consistent with a peptide-binding function for MHC class-I molecules. An outstanding question concerns the molecular nature and involvement of MHC-bound peptides in antigens recognized by alloreactive T cells. In this study the effects of peptides derived from HLA-A2 on cytolysis of alloreactive cytotoxic T cells (TC) cells are presented. Peptides can inhibit lysis by binding to the T cell or sensitize to lysis by binding an HLA-A2-related class-I molecule (HLA-Aw69) on the target cell. Thus, allospecific TC cells can recognize HLA-derived peptides in the context of the MHC.  相似文献   

7.
F Ronchese  R H Schwartz  R N Germain 《Nature》1987,329(6136):254-256
Mature T lymphocytes are activated by recognition of the combination of foreign protein antigen and membrane products of the major histocompatibility complex (MHC). Studies of peptide antigen binding to detergent-solubilized class II MHC molecules (Ia) have established that peptide-Ia interaction occurs in the absence of the T-cell receptor and varies according to allele-specific features of Ia molecules. The residues of immunogenic peptides thus contribute to two largely independent functions--the control of association with Ia molecules and the determination of the specificity of T-cell receptor binding. Two analogous and potentially independent functional sites have been postulated for Ia molecules--a region that controls binding to peptides and a region that interacts with T-cell receptors. Here we present evidence from functional analysis of recombinant class II molecules that these two postulated functional regions of Ia molecules do exist and can be independently manipulated, consistent with our recent demonstration of the segmental nature of Ia molecule structure-function relationships.  相似文献   

8.
J G Guillet  M Z Lai  T J Briner  J A Smith  M L Gefter 《Nature》1986,324(6094):260-262
T lymphocytes require a foreign antigen to be presented on a cell surface in association with a self-transplantation antigen before they can recognize it effectively. This phenomenon is known as major histocompatibility complex (MHC) restriction. It is not clear how an incalculably large number of foreign proteins form unique complexes with a very limited number of MHC molecules. We studied the recognition properties of T cells specific for a peptide derived from bacteriophage lambda cI protein. Analogues of this peptide, as well as peptides derived from other unrelated antigens which can be presented in the context of the same MHC molecule, can competitively inhibit activation of these T cells by the cI peptide. Furthermore, these unrelated antigens can stimulate cI-specific T cells if certain specific amino-acid residues are replaced. Here we suggest a model in which all antigens give rise to peptides that can bind to the same site on the MHC molecule. T-cell recognition of this site (which is presumed to be polymorphic) with or without antigen bound can explain self-selection in the thymus and MHC restriction.  相似文献   

9.
R Ceppellini  G Frumento  G B Ferrara  R Tosi  A Chersi  B Pernis 《Nature》1989,339(6223):392-394
T cells recognize protein antigens as fragments (peptides) held in a defined binding site of class I or class II major histocompatibility (MHC) molecules. The formation of complexes between various immunologically active peptides and different MHC molecules has been demonstrated directly in binding studies between the peptides and solubilized, purified molecules of class II MHC. Studies with intact cells, living or fixed, have not directly demonstrated the binding of the peptides to MHC molecules on antigen-presenting cells, but the formation of such complexes has been shown indirectly through the capacity of antigen-presenting cells to stimulate specific T cells. Here we report evidence that supports directly the binding of radiolabelled influenza matrix peptide 17-29 to products of the human class II MHC locus HLA-DR, on living homozygous B-cell lines, and we show that the kinetics of such binding is much faster with living cells than with fixed cells. Furthermore, whereas the peptide reacts with HLA-DR molecules of all alleles, it binds preferentially to DR1, the restricting element in antigen presentation.  相似文献   

10.
T lymphocytes recognize antigen in the form of peptides that associate with specific alleles of class I or class II major histocompatibility (MHC) molecules. By contrast with the clear MHC allele-specific binding of peptides to purified class II molecules purified solubilized class I molecules either bind relatively poorly or show degenerate specificity. Using photo-affinity labelling, we demonstrate here the specific interaction of peptides with cell-associated MHC class I molecules and show that this involves metabolically active processes.  相似文献   

11.
Newly synthesized major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum are thought to bind peptides of foreign and endogenous antigens. Several lines of evidence indicate that beta-2 microglobulin (beta 2m) and/or peptide ligand participate in the intracellular transport and surface expression of class I molecules, but the nature of their involvement is still unclear. Here we present evidence that culturing non-mutant cells (fibroblast, thymoma or mastocytoma) with a peptide ligand specific for the Ld class I molecule of the mouse leads to a dramatic (fourfold) and specific induction of Ld surface expression. Surprisingly, this peptide ligand-induced expression of Ld does not result in an increased intracellular association of Ld with beta 2m. These findings demonstrate that the previously reported decrease in surface expression of Ld results from its failure to be saturated with endogenous self-peptide ligands. This unique feature of Ld could also contribute to the fact that several virus-specific cytotoxic T cell responses have been found to be Ld-restricted.  相似文献   

12.
S Kvist  U Hamann 《Nature》1990,348(6300):446-448
Most cytotoxic T lymphocytes (CTL) recognize epitopes of foreign viral proteins in association with class I major histocompatibility complex (MHC) molecules. Viral proteins synthesized in the cytoplasm require intracellular fragmentation and exposure to the class I antigens for the development of CTL responses. Although indirect evidence for binding of peptides to class I antigens has accumulated, direct binding has only been shown recently. The formation of complexes between peptide and class I antigen may occur in the endoplasmic reticulum (ER) and peptides have been shown to induce assembly of the class I complex. We have translated the messenger RNAs encoding HLA-B27 (subtype 2705) and beta 2-microglobulin in a rabbit reticulocyte lysate supplemented with human microsomal membranes (to mimic ER membranes), in the absence and presence of a peptide derived from the nucleoprotein (residues 384-394) of influenza A virus. This peptide induces CTL activity against target cells expressing the HLA-B27 antigen. Here we report direct evidence that the nucleoprotein peptide promotes assembly of the HLA-B27 heavy chain and beta 2-microglobulin, and that this can occur in the ER immediately after synthesis of the two proteins.  相似文献   

13.
Antigenic peptides are presented to CD8+T lymphocytes by class I major histocompatibility complex (MHC) molecules. Peptides specifically bind to purified class I molecules in vitro, and to class I molecules on cells at nonphysiological temperatures. We report here the kinetic and equilibrium parameters for the binding of radiolabelled influenza nucleoprotein peptides (NP-Y365-380 and shorter homologues) to the murine H-2Db molecule on intact, viable cells at 37 degrees C. In contrast to earlier reports, we show that peptide binding is rapid and reversible, with dissociation constants ranging from nanomolar to micromolar, suggestive of typical ligand-receptor interactions. Only 10% of cell-surface Db molecules can bind these peptides. To address the relationship between peptide binding and T-cell recognition of the antigen-MHC complex, we determined the minimum number of complexes required to sensitize a target cell for lysis by class I-restricted cytotoxic T-lymphocytes. Our data indicate that EL4 thymoma cells (H-2b) can be sensitized for lysis by cytotoxic T-lymphocytes when as few as 200 class I-peptide complexes (less than 0.08% of surface Db molecules) are present per cell.  相似文献   

14.
H Bodmer  G Ogg  F Gotch  A McMichael 《Nature》1989,342(6248):443-446
Most cytotoxic T lymphocytes (CTL) not only recognize epitopes of viral or other foreign proteins in association with class I major histocompatibility complex (MHC) molecules, but also recognize target cells sensitized with short synthetic peptides representing the epitopes. There is increasing evidence that these synthetic peptides associate with the class I molecule both at the cell surface and intracellularly. We have now investigated the effect of a monoclonal antibody specific for HLA-A2 and HLA-B17 (B57/58) molecules (antibody MA2.1)3 on the sensitization of target cells with peptide for lysis by HLA-A2-restricted CTL. Previously, anti-HLA class I monoclonal antibodies have been shown to inhibit the recognition of target cells, infected with influenza A virus, by virus-specific CTL. We find, however, that target cells treated with MA2.1 antibody can be sensitized with peptide for CTL lysis much more rapidly than untreated cells, or at greater than 100-fold lower peptide concentration than that required for sensitization of untreated cells. This implies that the antibody, which is believed to bind to one side of the peptide-binding groove, directly affects the binding of peptide to the HLA-A2 molecule at the cell surface.  相似文献   

15.
The alpha 1 and alpha 2 domains of major histocompatibility complex (MHC) class I molecules function in the binding and presentation of foreign peptides to the T-cell antigen receptor and control both negative and positive selection of the T-cell repertoire. Although the alpha 3 domain of class I is not involved in peptide binding, it does interact with the T-cell accessory molecule, CD8. CD8 is important in the selection of T cells as anti-CD8 antibody injected into perinatal mice interferes with this process. We previously used a hybrid class I molecule with the alpha 1/alpha 2 domains from Ld and the alpha 3 domain from Q7b and showed that this molecule binds an Ld-restricted peptide but does not interact with CD8-dependent cytotoxic T lymphocytes. Expression of this molecule in transgenic mice fails to negatively select a subpopulation of anti-Ld cytotoxic T lymphocytes. In addition, positive selection of virus-specific Ld-restricted cytotoxic T lymphocytes does not occur. We conclude that besides the alpha 1/alpha 2 domains of class I, the alpha 3 domain plays an important part in both positive and negative selection of antigen-specific cells.  相似文献   

16.
Peptides that are antigenic for T lymphocytes are ligands for two receptors, the class I or II glycoproteins that are encoded by genes in the major histocompatibility complex, and the idiotypic alpha/beta chain T-cell antigen receptor. That a peptide must bind to an MHC molecule to interact with a T-cell antigen receptor is the molecular basis of the MHC restriction of antigen-recognition by T lymphocytes. In such a trimolecular interaction the amino-acid sequence of the peptide must specify the contact with both receptors: agretope residues bind to the MHC receptor and epitope residues bind to the T-cell antigen receptor. From a compilation of known antigenic peptides, two algorithms have been proposed to predict antigenic sites in proteins. One algorithm uses linear motifs in the sequence, whereas the other considers peptide conformation and predicts antigenicity for amphipathic alpha-helices. We report here that a systematic delimitation of an antigenic site precisely identifies a predicted pentapeptide motif as the minimal antigenic determinant presented by a class I MHC molecule and recognized by a cytolytic T lymphocyte clone.  相似文献   

17.
M G Brown  J Driscoll  J J Monaco 《Nature》1991,353(6342):355-357
Major histocompatibility complex (MHC) class I molecules associate with peptides derived from endogenously synthesized antigens. Cytotoxic T-lymphocytes can thus scan class I molecules and bound peptide on the surface of cells for foreign antigenic determinants. Recent evidence demonstrates that the products of trans-acting, non-class I genes in the class II region of the MHC are required in the class I antigen-processing pathway. There are genes (called HAM1 and HAM2 in the mouse) in this region that encode proteins postulated to be involved in the transport of peptide fragments into the endoplasmic reticulum for association with newly synthesized class I molecules. But, the mechanism by which such peptide fragments are produced remains a mystery. At least two genes encoding subunits of the low-molecular mass polypeptide (LMP) complex are tightly linked to the HAM1 and HAM2 genes. We show that the LMP complex is closely related to the proteasome (multicatalytic proteinase complex), an intracellular protein complex that has multiple proteolytic activities. We speculate that the LMP complex may have a role in MHC class I antigen processing, and therefore that the MHC contains a cluster of genes required for distinct functions in the antigen processing pathway.  相似文献   

18.
Serwold T  Gonzalez F  Kim J  Jacob R  Shastri N 《Nature》2002,419(6906):480-483
The ability of killer T cells carrying the CD8 antigen to detect tumours or intracellular pathogens requires an extensive display of antigenic peptides by major histocompatibility complex (MHC) class I molecules on the surface of potential target cells. These peptides are derived from almost all intracellular proteins and reveal the presence of foreign pathogens and mutations. How cells produce thousands of distinct peptides cleaved to the precise lengths required for binding different MHC class I molecules remains unknown. The peptides are cleaved from endogenously synthesized proteins by the proteasome in the cytoplasm and then trimmed by an unknown aminopeptidase in the endoplasmic reticulum (ER). Here we identify ERAAP, the aminopeptidase associated with antigen processing in the ER. ERAAP has a broad substrate specificity, and its expression is strongly upregulated by interferon-gamma. Reducing the expression of ERAAP through RNA interference prevents the trimming of peptides for MHC class I molecules in the ER and greatly reduces the expression of MHC class I molecules on the cell surface. Thus, ERAAP is the missing link between the products of cytosolic processing and the final peptides presented by MHC class I molecules on the cell surface.  相似文献   

19.
Peptide-dependent recognition of H-2Kb by alloreactive cytotoxic T lymphocytes   总被引:10,自引:0,他引:10  
W R Heath  M E Hurd  F R Carbone  L A Sherman 《Nature》1989,341(6244):749-752
Antigen-specific T lymphocytes appear to recognize foreign antigens in the form of peptide fragments presented within the antigen-binding groove of class I or class II molecules encoded by the major histocompatibility complex (MHC). Alloreactive T cells also show specificity for MHC molecules, and various reports suggest that residues of the MHC molecules constitute at least part of the ligand to which alloreactive T-cell receptors bind. The X-ray crystal structure of the human MHC class I molecule, HLA-A2, has provided evidence to strengthen the argument that MHC-bound self-peptide might also contribute to such recognition. We now provide direct evidence for this, showing that at least some alloreactive cytotoxic T lymphocyte clones recognize peptide fragments derived from cytoplasmic proteins. We reasoned that if self-peptides were involved in allorecognition, then the sequence of some of these peptides could vary between species, resulting in species-restricted distribution of the relevant ligand(s). Several alloreactive cytotoxic T lymphocyte clones specific for H-2Kb, expressed by the murine cell line EL4, did not lyse a human-cell transfectant expressing the H-2Kb molecule (Jurkat-Kb cells). However, these clones were able to lyse Jurkat-Kb cells sensitized by preincubation with an EL4 cytoplasmic extract cleaved by cyanogen bromide. The sensitizing activity from this extract was destroyed by protease and appeared to be due to a peptide consisting of 10 to 15 amino acids.  相似文献   

20.
Stefanová I  Dorfman JR  Germain RN 《Nature》2002,420(6914):429-434
Major histocompatibility complex (MHC) class I and II molecules are highly polymorphic proteins that bind and present foreign peptides to the clonally distributed alphabeta receptors (TCR) of T lymphocytes. As a population, the immature T lymphocytes generated in the thymus express a very diverse set of TCR specificities. A process of positive selection filters this broad repertoire to optimize peripheral T cells for antigen recognition in the context of available MHC products. Only those precursor T cells whose TCRs generate an adequate but not excessive signalling response to self-peptides bound to the expressed MHC proteins undergo successful maturation. Here we show that post-thymic self-recognition facilitates the antigen reactivity of mature T cells. Both experimental and physiological interruption of T-cell contact with self-peptide MHC ligands leads to a rapid decline in signalling and response sensitivity to foreign stimuli. Because the adaptive immune system must be recruited early in an infectious process when antigen is limiting, these findings suggest that positive selection ensures predictable T-cell recognition of available self-ligands, which in turn promotes efficient responses to pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号