首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 8 毫秒
1.
Glutamate synthase is a complex iron-sulfur flavoprotein that forms l-glutamate from l-glutamine and 2-oxoglutarate. It participates with glutamine synthetase in ammonia assimilation processes. The known structural and biochemical properties of glutamate synthase from Azospirillum brasilense, a nitrogen-fixing bacterium, will be discussed in comparison to those of the ferredoxin-dependent enzyme from photosynthetic tissues and of the eukaryotic reduced pyridine nucleotide-dependent form of glutamate synthase in order to gain insight into the mechanism of the glutamate synthase reaction. Sequence analyses also revealed that the small subunit of bacterial glutamate synthase may be the prototype of a novel class of flavin adenine dinucleotide- and iron-sulfur-containing oxidoreductase widely used as an enzyme subunit or domain to transfer reducing equivalents from NAD(P)H to an acceptor protein or protein domain. Received 10 November 1998, received after revision 10 December 1998; accepted 10 December 1998  相似文献   

2.
A 36-kDa phospholipid transfer protein (PLT-PR), which preferentially transfers phosphatidyl choline (PC) compared to phosphatidyl inositol (PI), was purified 827-fold from rabbit lung homogenate. Incorporation of cholesterol in unilamellar vesicles reduced the PC transfer activity of PLTPR. Dipalmitoyl phosphatidyl choline uptake by alveolar type II cells was increased in the presence of the protein, and further enhanced in the presence of surfactant liposomes. However, a decrease in uptake was noted with cholesterol in host membranes. Incorporation of PI into host membranes had a low stimulatory effect on the process. All these effects were more pronounced in adult type II cells compared to premature, term and 3-day-old pups. Received 12 September 2001; accepted 11 October 2001  相似文献   

3.
Flavodoxins: sequence, folding, binding, function and beyond   总被引:5,自引:0,他引:5  
Flavodoxins are electron-transfer proteins involved in a variety of photosynthetic and non-photosynthetic reactions in bacteria, whereas, in eukaryotes, a descendant of the flavodoxin gene helps build multidomain proteins. The redox activity of flavodoxin derives from its bound flavin mononucleotide cofactor (FMN), whose intrinsic properties are profoundly modified by the host apoprotein. This review covers the very exciting last decade of flavodoxin research, in which the folding pathway, the structure and stability of the apoprotein, the mechanism of FMN recognition, the interactions that stabilize the functional complex and tailor the redox potentials, and many details of the binding and electron transfer to partner proteins have been revealed. The next decade should witness an even deeper understanding of the flavodoxin molecule and a greater comprehension of its many physiological roles. The fact that flavodoxin is essential for the survival of some human pathogens could make it a drug target on its own. Received 26 October 2005; received after revision 20 November 2005; accepted 14 December 2005  相似文献   

4.
Much effort has been devoted recently to expanding the amino acid repertoire in protein biosynthesis in vivo. From such experimental work it has emerged that some of the non-canonical amino acids are accepted by the cellular translational machinery while others are not, i.e. we have learned that some determinants must exist and that they can even be anticipated. Here, we propose a conceptual framework by which it should be possible to assess deeper levels of the structure of the genetic code, and based on this experiment to understand its evolution and establishment. First, we propose a standardised repertoire of 20 amino acids as a basic set of conserved building blocks in protein biosynthesis in living cells to be the main criteria for genetic code structure and evolutionary considerations. Second, based on such argumentation, we postulate the structure and evolution of the genetic code in the form of three general statements: (i) the nature of the genetic code is deterministic; (ii) the genetic code is conserved and universal; (iii) the genetic code is the oldest known level of complexity in the evolution of living organisms that is accessible to our direct observation and experimental manipulations. Such statements are discussed as our working hypotheses that are experimentally tested by recent findings in the field of expanded amino acid repertoire in vivo. Received 30 June 1999; accepted 9 July 1999  相似文献   

5.
Cyanovirin-N: a sugar-binding antiviral protein with a new twist   总被引:7,自引:0,他引:7  
Cyanovirin-N (CV-N), an 11-kDa protein from the cyanobacterium Nostoc ellipsosporum, is a highly potent virucidal agent that has generated interest as a lead natural product for the prevention and chemotherapy of human immunodeficiency virus infection. The antiviral activity of CV-N is mediated through specific, high-affinity interactions with the viral surface envelope glycoproteins. A number of structures of wild-type, mutant and sequence-shuffled CV-N have been solved by nuclear magnetic resonance and crystallography, showing that the protein exists as either a quasi-symmetric two-domain monomer or a domain-swapped dimer. Structures of several complexes of CV-N with oligosaccharides help in explaining the unique mode of high-affinity binding of these molecules to both forms of CV-N. RID="*" ID="*"Corresponding author.  相似文献   

6.
Mammalian blood coagulation is based on the proteolytically induced polymerization of fibrinogens. Initially, fibrin monomers noncovalently interact with each other. The resulting homopolymers are further stabilized when the plasma transglutaminase (TGase) intermolecularly cross-links -(-glutamyl)lysine bonds. In crustaceans, hemolymph coagulation depends on the TGase-mediated cross-linking of specific plasma-clotting proteins, but without the proteolytic cascade. In horseshoe crabs, the proteolytic coagulation cascade triggered by lipopolysaccharides and b-1,3-glucans leads to the conversion of coagulogen into coagulin, resulting in noncovalent coagulin homopolymers through head-to-tail interaction. Horseshoe crab TGase, however, does not cross-link coagulins intermolecularly. Recently, we found that coagulins are cross-linked on hemocyte cell surface proteins called proxins. This indicates that a cross-linking reaction at the final stage of hemolymph coagulation is an important innate immune system of horseshoe crabs.Received 27 October 2003; received after revision 25 November 2003; accepted 1 December 2003  相似文献   

7.
The finding that mitochondria contain substrates for protein kinases lead to the discovery that protein kinases are located in the mitochondria of certain tissues and species. These include pyruvate dyhydrogenase kinase, branched-chain α-ketoacid dehydrogenase kinase, protein kinase A, protein kinase Cδ, stress-activated kinase and A-Raf as well as unidentified kinases. Recent evidence suggests that mitochondrial protein kinases may be involved in physiological processes such as apoptosis and steroidogenesis. Additionally, the novel finding of low-molecular-weight GTP-binding proteins in mitochondria suggests the possibility that these may interact with mitochondrial protein kinases to regulate the activity of mitochondrial effector proteins. The fact that there are components of cellular regulatory systems in mitochondria indicates the exciting possibility of undiscovered systems regulating mitochondrial physiology. Received 19 June 2001; received after revision 7 August 2001; accepted 8 August 2001  相似文献   

8.
l-Xylulose reductase (XR) is involved in water re-absorption and cellular osmoregulation. The crystal structure of human XR complemented with site-directed mutagenesis (Cys138Ala) indicated that the disulfide bond in the active site between Cys138 and Cys150 is unstable and may affect the reactivity of the enzyme. The effects of reducing agents on the activities of the wild-type and mutant enzymes indicated the reversibility of disulfide-bond formation, which resulted in three-fold decrease in catalytic efficiency. Furthermore, the addition of cysteine (>2 mM) inactivated human XR and was accompanied by a 10-fold decrease in catalytic efficiency. TOF-MS analysis of the inactivated enzyme showed the S-cysteinylation of Cys138 in the wild-type and Cys150 in the mutant enzymes. Thus, the action of human XR may be regulated by cellular redox conditions through reversible disulfide-bond formation and by S-cysteinylation. Received 25 January 2009; received after revision 12 February 2009; accepted 16 February 2009 H.-T. Zhao, S. Endo: These two authors contribute equally to this work.  相似文献   

9.
10.
Prolactin inducible protein (PIP) is a 17- kDa single polypeptide chain, known by various names due to its versatile nature and function in human reproductive and immunological systems. It is expressed in several exocrine tissues such as the lacrimal, salivary, and sweat glands. Its expression is up regulated by prolactin and androgens, and estrogens down regulate it. Due to its over-expression in metastatic breast and prostate cancer, presently PIP is considered as a prognostic biomarker. Moreover, its aspartyl-proteinase nature suggests its role in tumor progression. PIP has unique features because it is small in size and plays multiple important functions. Its ability to bind potentially with CD4-T cell receptor, immunoglobulin G (IgG), actin, zinc α2-glycoprotein (ZAG), fibronectin and enamel pellicle, reveals its important biological functions. This is the first comprehensive review on the structure and functional analysis of PIP and its clinical applications. Received 04 August 2008; received after revision 09 September 2008; accepted 15 September 2008  相似文献   

11.
Reversible tyrosine phosphorylation is a key posttranslational regulatory modification of proteins in all eukaryotic cells in normal and pathological processes. Recently a pivotal janus-faced biological role of the low molecular weight protein tyrosine phosphatase (LMWPTP) has become clear. On the one hand this enzyme is important in facilitating appropriate immune responses towards infectious agents, on the other hand it mediates exaggerated inflammatory responses toward innocuous stimuli. The evidence that LMWPTP plays a role in oncological processes has added a promising novel angle. In this review we shall focus on the regulation of LMWPTP enzymatic activity of signaling pathways of different immunological cells, the relation between genetic polymorphism of LMWPTP and predisposition to some type of inflammatory disorders and the contribution of this enzyme to cancer cell onset, growth and migration. Therefore, the LMWPTP is an interesting target for pharmacological intervention, thus modifying both inappropriate cellular immune responses and cancer cell aggressiveness. Received 15 August 2008; received after revision 06 October 2008; accepted 14 October 2008  相似文献   

12.
The AMP-activated protein kinase (AMPK) is a metabolite sensing serine/threonine kinase that has been termed the master regulator of cellular energy metabolism due to its numerous roles in the regulation of glucose, lipid, and protein metabolism. In this review, we first summarize the current literature on a number of important aspects of AMPK in skeletal muscle. These include the following: (1) the structural components of the three AMPK subunits (i.e. AMPKα, β, and γ), and their differential localization in response to stimulation in muscle; (2) the biochemical regulation of AMPK by AMP, protein phosphatases, and its three known upstream kinases, LKB1, Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), and transforming growth factor-β-activated kinase 1 (TAK1); (3) the pharmacological agents that are currently available for the activation and inhibition of AMPK; (4) the physiological stimuli that activate AMPK in muscle; and (5) the metabolic processes that AMPK regulates in skeletal muscle. Received 04 May 2008; received after revision 14 June 2008; accepted 14 July 2008  相似文献   

13.
Dictyostelium discoideum is a eukaryotic microorganism that is attractive for the study of fundamental biological phenomena such as cell-cell communication, formation of multicellularity, cell differentiation and morphogenesis. Large-scale sequencing of the D. discoideum genome has provided new insights into evolutionary strategies evolved by transposable elements (TEs) to settle in compact microbial genomes and to maintain active populations over evolutionary time. The high gene density (about 1 gene/2.6 kb) of the D. discoideum genome leaves limited space for selfish molecular invaders to move and amplify without causing deleterious mutations that eradicate their host. Targeting of transfer RNA (tRNA) gene loci appears to be a generally successful strategy for TEs residing in compact genomes to insert away from coding regions. In D. discoideum, tRNA gene-targeted retrotransposition has evolved independently at least three times by both non-long termina l repeat (LTR) retrotransposons and retrovirus-like LTR retrotransposons. Unlike the nonspecifically inserting D. discoideum TEs, which have a strong tendency to insert into preexisting TE copies and form large and complex clusters near the ends of chromosomes, the tRNA gene-targeted retrotransposons have managed to occupy 75% of the tRNA gene loci spread on chromosome 2 and represent 80% of the TEs recognized on the assembled central 6.5-Mb part of chromosome 2. In this review we update the available information about D. discoideum TEs which emerges both from previous work and current large-scale genome sequencing, with special emphasis on the fact that tRNA genes are principal determinants of retrotransposon insertions into the D. discoideum genome. Received 10 May 2002; received after revision 10 June 2002; accepted 12 June 2002 RID="*" ID="*"Corresponding author.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号