共查询到20条相似文献,搜索用时 15 毫秒
1.
基于轨道板与底座板分离,建立了考虑轨道板损伤的CTRSⅡ型板式无砟轨道与桥梁相互作用力学模型,并采用有限单元法求解,分析了轨道板全断面开裂和更换轨道板对大跨度连续梁桥上钢轨、底座板、剪力齿槽、桥梁墩台及砂浆受力的影响.结果表明:轨道板全断面开裂后钢轨、底座板的纵向力增加,最大增幅分别为22.55和131.48 k N,轨道板纵向力则降低,剪力齿槽、桥梁墩台的纵向力变化很小;轨道板全断面开裂对钢轨和底座板纵向受力影响范围分别为32~50 m和24~36 m;桥梁伸缩或列车制动作用下全断面开裂位置的砂浆阻力接近其极限阻力,为避免砂浆开裂应及时更换轨道板;更换轨道板对底座板纵向受力影响最大,建议轨道板进行更换作业的板温变化幅度控制在15℃以内. 相似文献
2.
为了分析京沪高速铁路CRTSⅡ型板式无砟轨道结构的动力响应,通过建立无砟轨道结构-下部基础结构动力有限元分析模型,得到了结构前10阶模态和不同列车速度下无砟轨道结构的动力特性.分析结果表明:桥梁上CRTSⅡ型板式无砟轨道结构的自振频率都比规范的限值大,说明桥梁有足够的刚度保证列车行驶的安全性和舒适性;桥梁上板式无砟轨道结构的前10阶振型中大部分振型表现为横向扭转,桥梁结构横向刚度相对较小,在实际的高速铁路桥梁结构中应注意桥梁的横向稳定性;无砟轨道结构各个构件的竖向位移、竖向加速度、板底水平拉应力及CA砂浆层竖向压应力均随列车速度的增大而逐渐增大;线下基础结构顶面竖向压应力存在转折变化点. 相似文献
3.
路基上CRTSⅢ型板式无砟轨道结构设计方案分析 总被引:2,自引:0,他引:2
路基上CRTS(China railway track system)Ⅲ型板式无砟轨道结构存在单元式和纵连式两种设计方案.通过建立纵横垂向空间耦合有限元计算模型,对两种设计方案在温度荷载、列车荷载、混凝土收缩及基础沉降变形作用下的力学特性进行了计算与对比分析.计算结果表明:对于严寒地区,基于温度荷载的影响较大以及轨道的可维修性,建议采用单元式结构. 相似文献
4.
简要介绍了CRTSⅡ型板式无砟轨道的基本结构、施工工艺、总结施工经验,为以后同类轨道结构施工提供借鉴。 相似文献
5.
高铁长大桥梁CRTSⅠ型板式无砟轨道无缝线路的动力学特性 总被引:2,自引:0,他引:2
在大跨度连续梁上铺设CRTS Ⅰ型板式无砟轨道结构,并且考虑高速车辆的动力作用之后,其梁轨相互作用机理更加复杂.基于ABAQUS软件,建立高速铁路长大桥梁CRTSⅠ型板式无砟轨道无缝线路纵横垂向空间耦合动力学模型,可以对高速条件下高速车辆、无缝线路钢轨、无砟轨道和长大桥梁各细部结构的动力学特性进行研究.经计算和检算可知,在铺设CRTS Ⅰ型板式无砟轨道无缝线路的(80+ 128+ 80)m连续梁上运行时速350 km的高速车辆,其各项动力学计算结果均满足动力学检算标准. 相似文献
6.
基于列车-轨道耦合动力学理论,建立列车-板式无砟轨道-路基三维有限元耦合动力学模型,并对建立的三维有限元耦合动力学模型进行相应的程序验证。运用建立的耦合动力学模型,对列车在路基上板式无砟轨道线路上高速行驶时,在线路平顺工况和各种不平顺工况下,无砟轨道各部件动力特性和相应动力系数进行理论研究。研究结果表明:在线路平顺状态下,车辆轮载及无砟轨道各部件动力响应很小,动力系数不超过1.2;在线路中长波随机不平顺激扰下,轮载动力系数接近2,无砟轨道各部件动力系数在1.70~2.06之间,轮载动力系数和无砟轨道各部件动力系数相差不大;短波不平顺对轮载动力系数有很大的影响,由于短波不平顺引起的振动在无砟轨道中衰减很快,其对无砟轨道上部部件动力系数的影响较大,而对无砟轨道下部部件动力系数的影响很小。 相似文献
7.
探讨了两布一膜滑动层在高速铁路CRTS Ⅱ型板式无砟轨道施工中的应用,并结合石武高速铁路工程,总结出一套技术先进,操作简单的施工工艺。 相似文献
8.
为研究冬季高速铁路桥上CRTSⅡ型板式无砟轨道温度分布规律,制作无砟轨道-预应力混凝土简支箱梁结构1?4缩尺试验模型,开展冬季低温气候无阳光直射环境下的温度分布试验,研究CRTSⅡ型板式无砟轨道结构的温度变化规律,提出该型无砟轨道在高速铁路桥上的温度分布形式.研究结果表明:1)寒冷季节高速铁路桥上CRTSⅡ型板式无砟轨... 相似文献
9.
为获取高速铁路CRTSⅢ型板式无砟轨道底部荷载横向传递规律,通过实车试验并建立多车-无砟轨道-路基空间耦合分析模型开展研究,对不同行车速度下扣件支点反力和复合板与底座板下荷载横向分布规律进行了分析.研究结果表明:仿真分析模型能够较好地模拟现场行车荷载效应.行车速度对扣件支反力和板下荷载横向分布影响较小;建议轮轴作用点处扣件荷载承担比例选取为40%,与其相邻的两个扣件由近及远依次取为25%和5%;实测复合板底部荷载在横向上呈典型的双峰型分布,峰值处压应力最大为149.5kPa;实测底座板底部荷载在横向上呈M型分布,峰值处压应力最大为16.2kPa;既有规范在无砟轨道底部荷载取值时缺乏对扣件支反力影响范围、不同无砟轨道厚度及结构特征、基础刚度、各动车组参数等影响因素的考虑,建议开展针对性研究,完善无砟轨道设计参数体系. 相似文献
10.
根据石武客运专线CRTSⅡ型板式无砟轨道道下揭板试验实例,介绍了CA砂浆搅拌、灌注和轨道板粗铺、精调等各项施工工艺及现场揭板检验平坡和最大曲线超高CA砂浆垫层的充填饱满度、匀质性和密实性,为类似工程提供参考。 相似文献
11.
12.
CRTSⅡ型板式无砟轨道技术,其轨道结构主要由轨道板、乳化沥青砂浆充填层、混凝土底座及钢轨扣件等构成。主要通过石武客专无砟轨道工艺性试验,模拟无砟轨道施工过程中的各个工序、质量控制要点、人员配置、乳化沥青砂浆施工配合比等情况,为以后正式施工打好坚实的基础。 相似文献
13.
任宏伟 《科技情报开发与经济》2011,21(18):208-210
以石武客运专线SWZQ-5标CRTSⅡ型板式无砟轨道先导段为例,重点介绍了先导段底座板张拉施工的工艺及要点,探讨了最优温度及时间的确定,最佳张拉顺序的选择,以期为大面积展开无砟轨道底座板施工提供技术保障。 相似文献
14.
为探明严寒地区外界荷载对无砟轨道非线性损伤及服役性能的影响,从细观损伤力学角度入手,建立了考虑混凝土塑性和结构配筋的CRTSⅢ型板式无砟轨道-路基精细化模型,分析了不同路基冻胀下轨道结构变形和底座板损伤规律,并探讨了温度及列车荷载组合作用对结构的影响.结果表明:无砟轨道会因下部冻胀变形产生层间离缝,与冻胀量相比,冻胀波长是离缝产生与发展的主要因素;当冻胀发生在轨道板中部时离缝最大,在底座板凹槽位置时,其上表面混凝土最易出现拉裂损伤;整体降温会加剧底座板损伤,当负温度梯度与冻胀组合作用时,底座板与路基间离缝可达20.8 mm;列车荷载会加剧底座板损伤和减小其作用下方的结构层间离缝,由于"杠杆作用",荷载关于冻胀波峰对称位置处复合板层间离缝峰值比单一冻胀增加了55.5%. 相似文献
15.
16.
随着我国高速铁路的兴建,无砟轨道结构尤其是板式无砟轨道结构得到了大量应用。对国外引进的无砟轨道技术需要进行消化吸收再创新时,关键之一就是要对此种轨道结构的静、动力特性进行深入研究,从而指导无砟轨道的设计与施工。无砟轨道主要参数对轨道结构的静、动力特性影响显著,通过本文计算分析得出:较宽和较厚的轨道板有利减小板式轨道的受力与变形;较大的弹性模量有利于减小板式轨道的受力与变形。 相似文献
17.
陈小平 《福州大学学报(自然科学版)》2012,40(3):383-387
建立连续梁桥上CRTSⅡ型板式无砟轨道纵向力计算模型和求解方法,分析滑动层摩擦系数、底座板伸缩刚度和扣件纵向阻力对大跨度连续梁桥上伸缩附加力的影响.结果表明:降低滑动层摩擦系数和扣件纵向阻力可以减小钢轨和底座板伸缩附加力,增加底座板伸缩刚度可以减小钢轨和桥梁墩台伸缩附加力. 相似文献
18.
惠学智 《中国新技术新产品精选》2011,(15):93-93
我国高速铁路工程的建设加快了我国铁路运输能力与市场竞争力的提高,为我国铁路运输事业的发展奠定了基础。作为高速铁路建设中的关键,CRTSⅡ型预应力钢筋混凝土轨道板的预制质量对高速铁路行车舒适性与安全性有着重要的影响。本文就CRTSⅡ型预应力钢筋混凝土轨道板的预制及预制过程中的质量控制进行了分析与论述。 相似文献
19.
为探明整体温升荷载对纵连板式无砟轨道宽窄接缝的损伤演化规律,建立了纵连板式无砟轨道宽窄接缝损伤数值模型,模拟了轨道板宽窄接缝混凝土劣化、施工温差及初始裂纹条件下的宽窄接缝损伤情况,探讨了各种因素对宽窄接缝损伤的影响.研究结果表明:整体温升作用下,宽窄接缝的损伤主要集中在接缝处的板边缘位置,接缝损伤随温度升高逐渐增大.宽接缝压溃会加剧轨道板偏心受压,导致层间界面离缝;接缝混凝土强度越大,接缝损伤临界温升和压溃临界温升越高;施工温差越大,整体温升条件下宽窄接缝损伤情况越严重.保证宽窄接缝施工温度相同,可有效避免整体温升作用下宽窄接缝损伤程度的差异;轨道板初始裂纹会显著增加宽窄接缝的损伤程度,同时将导致宽接缝压溃临界温升值明显降低. 相似文献
20.
为研究CRTSⅢ型板式无砟轨道下路基在设计使用年限内的累积变形规律,设计了路基累积变形试验方案.介绍了CRTSⅢ型板式无砟轨道-路基足尺模型试验平台,并在该试验平台上开展了1亿次循环荷载试验.试验结果表明:路基动应力受循环荷载作用轴次的影响很小;随着列车荷载作用轴次的增加,路基累积变形在加载初期增长较快,随后增长速率逐渐变小,当加载轴次达到350万次后趋于稳定,在1亿次加载后最终稳定值为3.38 mm;基床表层、基床底层、路基本体和地基累积变形分别占路基总体累积变形的68.93%、16.86%、8.88%、5.33%.最后,基于模型试验结果提出了高速铁路路基累积变形预测模型,可为建立起符合实际的列车长期重复荷载作用下高速铁路路基累积变形计算方法提供参考和借鉴. 相似文献