首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Introduction by site-directed mutagenesis of three amino acids from the MII segment of glycine or gamma-aminobutyric acid (GABAA) receptors into the MII segment of alpha 7 nicotinic receptor was sufficient to convert a cation-selective channel into an anion-selective channel gated by acetylcholine. A critical mutation was the insertion of an uncharged residue at the amino-terminal end of MII, stressing the importance of protein geometrical constraints on ion selectivity.  相似文献   

2.
Sun Y  Olson R  Horning M  Armstrong N  Mayer M  Gouaux E 《Nature》2002,417(6886):245-253
Ligand-gated ion channels transduce chemical signals into electrical impulses by opening a transmembrane pore in response to binding one or more neurotransmitter molecules. After activation, many ligand-gated ion channels enter a desensitized state in which the neurotransmitter remains bound but the ion channel is closed. Although receptor desensitization is crucial to the functioning of many ligand-gated ion channels in vivo, the molecular basis of this important process has until now defied analysis. Using the GluR2 AMPA-sensitive glutamate receptor, we show here that the ligand-binding cores form dimers and that stabilization of the intradimer interface by either mutations or allosteric modulators reduces desensitization. Perturbations that destabilize the interface enhance desensitization. Receptor activation involves conformational changes within each subunit that result in an increase in the separation of portions of the receptor that are linked to the ion channel. Our analysis defines the dimer interface in the resting and activated state, indicates how ligand binding is coupled to gating, and suggests modes of dimer dimer interaction in the assembled tetramer. Desensitization occurs through rearrangement of the dimer interface, which disengages the agonist-induced conformational change in the ligand-binding core from the ion channel gate.  相似文献   

3.
B Sakmann  J Patlak  E Neher 《Nature》1980,286(5768):71-73
High resolution measurements of the current through individual ion channels activated by acetylcholine (AChR- channels) in frog muscle have shown that these currents are discrete pulse-like events with durations of a few milliseconds. Fluctuation and relaxation measurements of end-plate currents have led to the conclusion that the rate of channel opening increases with agonist concentrations, and that the channel, once open, closes spontaneously. Katz and Thesleff have shown, however, that in the continued presence of ACh, the initial end-plate current declines to an equilibrium value with a time constant of several seconds. This reversible phenomenon is referred to as receptor desensitization. We report here that in the presence of ACh concentrations sufficient to cause desensitization, single channel current pulses appear in groups. From the temporal sequence of the pulses, we have derived estimates of the rates of activation and desensitization of the AChR-channel.  相似文献   

4.
R L Huganir  A H Delcour  P Greengard  G P Hess 《Nature》1986,321(6072):774-776
Recent studies have provided evidence for a role of protein phosphorylation in the regulation of the function of various potassium and calcium channels (for reviews, see refs 1, 2). As these ion channels have not yet been isolated and characterized, it has not been possible to determine whether phosphorylation of the ion channels themselves alters their properties or whether some indirect mechanism is involved. In contrast, the nicotinic acetylcholine receptor, a neurotransmitter-dependent ion channel, has been extensively characterized biochemically and has been shown to be directly phosphorylated. The phosphorylation of this receptor is catalysed by at least three different protein kinases (cyclic AMP-dependent protein kinase, protein kinase C and a tyrosine-specific protein kinase) on seven different phosphorylation sites. However, the functional significance of phosphorylation of the receptor has been unclear. We have now examined the functional effects of phosphorylation of the nicotinic acetylcholine receptor by cAMP-dependent protein kinase. We investigated the ion transport properties of the purified and reconstituted acetylcholine receptor before and after phosphorylation. We report here that phosphorylation of the nicotinic acetylcholine receptor on the gamma- and delta-subunits by cAMP-dependent protein kinase increases the rate of the rapid desensitization of the receptor, a process by which the receptor is inactivated in the presence of acetylcholine (ACh). These results provide the first direct evidence that phosphorylation of an ion channel protein modulates its function and suggest that phosphorylation of postsynaptic receptors in general may play an important role in synaptic plasticity.  相似文献   

5.
Coupling of agonist binding to channel gating in the GABA(A) receptor   总被引:7,自引:0,他引:7  
Kash TL  Jenkins A  Kelley JC  Trudell JR  Harrison NL 《Nature》2003,421(6920):272-275
Neurotransmitters such as acetylcholine and GABA (gamma-aminobutyric acid) mediate rapid synaptic transmission by activating receptors belonging to the gene superfamily of ligand-gated ion channels (LGICs). These channels are pentameric proteins that function as signal transducers, converting chemical messages into electrical signals. Neurotransmitters activate LGICs by interacting with a ligand-binding site, triggering a conformational change in the protein that results in the opening of an ion channel. This process, which is known as 'gating', occurs rapidly and reversibly, but the molecular rearrangements involved are not well understood. Here we show that optimal gating in the GABA(A) receptor, a member of the LGIC superfamily, is dependent on electrostatic interactions between the negatively charged Asp 57 and Asp 149 residues in extracellular loops 2 and 7, and the positively charged Lys 279 residue in the transmembrane 2-3 linker region of the alpha1-subunit. During gating, Asp 149 and Lys 279 seem to move closer to one another, providing a potential mechanism for the coupling of ligand binding to opening of the ion channel.  相似文献   

6.
O P Hamill  J Bormann  B Sakmann 《Nature》1983,305(5937):805-808
In the mammalian central nervous system, glycine and gamma-aminobutyric acid (GABA) bind to specific and distinct receptors and cause an increase in membrane conductance to CI- (refs 5-7). Neurones in various regions of the nervous system show differential sensitivity to glycine and GABA; thus GABA and glycine receptors are spatially distinct from one another. However, on the basis of desensitization experiments on spinal cord neurones, it was suggested that the receptors for glycine and GABA may share the same CI- channel. We now report that in small membrane patches, isolated from the soma of spinal neurones, both receptor channels display several (multiple) conductance states. Two of the states are common to both receptor channels. However, the most frequently observed 'main conductance states' of the GABA and glycine receptor channels are different. Both channels display the same anion selectivity. We propose that one class of multistate CI- channel is coupled to either GABA or glycine receptors. The main conductance state adopted by this channel is determined by the receptor to which it is coupled.  相似文献   

7.
Ranganathan R  Cannon SC  Horvitz HR 《Nature》2000,408(6811):470-475
The neurotransmitter and neuromodulator serotonin (5-HT) functions by binding either to metabotropic G-protein-coupled receptors (for example, 5-HT1, 5-HT2, 5-HT4 to 5-HT7), which mediate 'slow' modulatory responses through numerous second messenger pathways, or to the ionotropic 5-HT3 receptor, a non-selective cation channel that mediates 'fast' membrane depolarizations. Here we report that the gene mod-1 (for modulation of locomotion defective) from the nematode Caenorhabditis elegans encodes a new type of ionotropic 5-HT receptor, a 5-HT-gated chloride channel. The predicted MOD-1 protein is similar to members of the nicotinic acetylcholine receptor family of ligand-gated ion channels, in particular to GABA (gamma-aminobutyric acid)- and glycine-gated chloride channels. The MOD-1 channel has distinctive ion selectivity and pharmacological properties. The reversal potential of the MOD-1 channel is dependent on the concentration of chloride ions but not of cations. The MOD-1 channel is not blocked by calcium ions or 5-HT3a-specific antagonists but is inhibited by the metabotropic 5-HT receptor antagonists mianserin and methiothepin. mod-1 mutant animals are defective in a 5-HT-mediated experience-dependent behaviour and are resistant to exogenous 5-HT, confirming that MOD-1 functions as a 5-HT receptor in vivo.  相似文献   

8.
Two defining functional features of ion channels are ion selectivity and channel gating. Ion selectivity is generally considered an immutable property of the open channel structure, whereas gating involves transitions between open and closed channel states, typically without changes in ion selectivity. In store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels, the molecular mechanism of channel gating by the CRAC channel activator, stromal interaction molecule 1 (STIM1), remains unknown. CRAC channels are distinguished by a very high Ca(2+) selectivity and are instrumental in generating sustained intracellular calcium concentration elevations that are necessary for gene expression and effector function in many eukaryotic cells. Here we probe the central features of the STIM1 gating mechanism in the human CRAC channel protein, ORAI1, and identify V102, a residue located in the extracellular region of the pore, as a candidate for the channel gate. Mutations at V102 produce constitutively active CRAC channels that are open even in the absence of STIM1. Unexpectedly, although STIM1-free V102 mutant channels are not Ca(2+)-selective, their Ca(2+) selectivity is dose-dependently boosted by interactions with STIM1. Similar enhancement of Ca(2+) selectivity is also seen in wild-type ORAI1 channels by increasing the number of STIM1 activation domains that are directly tethered to ORAI1 channels, or by increasing the relative expression of full-length STIM1. Thus, exquisite Ca(2+) selectivity is not an intrinsic property of CRAC channels but rather a tuneable feature that is bestowed on otherwise non-selective ORAI1 channels by STIM1. Our results demonstrate that STIM1-mediated gating of CRAC channels occurs through an unusual mechanism in which permeation and gating are closely coupled.  相似文献   

9.
J F Hopfield  D W Tank  P Greengard  R L Huganir 《Nature》1988,336(6200):677-680
Tyrosine-specific protein phosphorylation has been implicated in the regulation of cell transformation and proliferation. However, recent studies have shown that the expression of protein tyrosine kinases in adult brain is very high, suggesting that tyrosine-specific protein phosphorylation may also have a role in the regulation of neuronal function. Although a number of substrate proteins are phosphorylated on tyrosine residues, the functional alteration of proteins by tyrosine phosphorylation has previously been convincingly demonstrated only for protein tyrosine kinases. The nicotinic acetylcholine receptor, a neurotransmitter-gated ion channel, is phosphorylated by a protein tyrosine kinase in post-synaptic membranes in vitro and in vivo. We demonstrate here that this tyrosine phosphorylation increases the rate of the rapid phase of desensitization of the nicotinic receptor, as measured by single channel recording of purified nicotinic acetylcholine receptor, when reconstituted in lipid vesicles. These data provide direct evidence for the regulation of ion channel properties by tyrosine phosphorylation. The results, which demonstrate a functional role of tyrosine phosphorylation in the nervous system, suggest a widespread role for tyrosine phosphorylation in neuronal signal transduction.  相似文献   

10.
X M Yu  Z W Hall 《Nature》1991,352(6330):64-67
Ligand-gated ion channels, a major class of cell-surface proteins, have a pseudosymmetric structure with five highly homologous subunits arranged around a central ion pore. The correct assembly of each channel, whose subunit composition varies with cell type and stage of development, requires specific recognition between the subunits. Assembly of the pentameric form of the acetylcholine receptor from adult muscle (AChR; alpha 2 beta epsilon delta) proceeds by a stepwise pathway starting with the formation of the heterodimers, alpha epsilon and alpha delta. The heterodimers than associate with the beta subunit and with each other to form the complete receptor. We have now determined which parts of the subunits mediate the interactions during assembly of the adult form of the receptor from mouse muscle by using a chimaeric subunit in which the N-terminal and C-terminal extracellular domains are derived from the epsilon subunit with the remainder from the beta subunit. The epsilon and beta subunits were chosen because the epsilon subunit forms a heterodimer with the alpha subunit in the pathway for assembly of the receptor, whereas the beta subunit does not. The epsilon beta chimera can substitute for the epsilon but not the beta subunit in the oligomeric receptor, indicating that the alpha subunit specifically recognizes an extracellular domain of the epsilon subunit.  相似文献   

11.
A Trautmann 《Nature》1982,298(5871):272-275
Curare has long been regarded as a typical competitive antagonist of acetylcholine (ACh) at the vertebrate neuromuscular junction. Recently, however, it has been shown that curare can also block the channels opened by ACh at the frog neuromuscular junction as well as on rat and Aplysia neurones; moreover, curare is able to depolarize rat myotubes and thus behaves as an agonist for the cholinergic receptor of this preparation (see ref. 6). Using the single channel recording technique, we have now found that, on rat myotubes, curare can both open and block in the same cell the channels controlled by the cholinergic receptor.  相似文献   

12.
Excitatory amino acids (EAAs) are important neurotransmitters in the vertebrate central nervous system. Electrophysiological and ligand-binding studies indicate that at least three different receptor subtypes for EAAs exist--N-methyl-D-aspartate, kainate and quisqualate receptor subtypes--on the basis of the preferred agonist of the receptors. We recently purified a kainate-binding protein (KBP) from frog (Rana pipiens berlandieri) brain by domoic acid (a high-affinity kainate analogue) affinity chromatography, and showed that the kainate-binding activity was associated with a protein of relative molecular mass 48,000 (Mr 48 K). The pharmacological properties and the anatomical distribution of KBP were consistent with those of a kainate receptor-ionophore complex. We have now isolated a complementary DNA encoding KBP of Mr 48 K. The deduced amino-acid sequence of the KBP has similar hydrophobic profiles to those found in other ligand-gated ion channel subunits, and shows some amino-acid sequence similarities to the corresponding regions of brain nicotinic acetylcholine receptor subunits. Localization of the KBP messenger RNAs by in situ hybridization histochemistry is compatible with the results of immunohistochemistry and receptor autoradiography studies. COS-7 cells transfected with the cDNA encoding the KBP show high-affinity kainate-binding activity with pharmacological properties similar to those of the biochemically purified KBP. These results provide the first molecular characterization of an EAA-binding site and raise the possibility that the KBP cDNA encodes a ligand-binding subunit of a kainate receptor-ionophore complex.  相似文献   

13.
We have cloned and sequenced cDNAs of the strychnine-binding subunit of the rat glycine receptor, a neurotransmitter-gated chloride channel protein of the CNS. The deduced polypeptide shows significant structural and amino-acid sequence homology with nicotinic acetylcholine receptor proteins, indicating that there is a family of genes encoding neurotransmitter-gated ion channels.  相似文献   

14.
5-HT3 receptors are membrane ion channels   总被引:20,自引:0,他引:20  
V Derkach  A Surprenant  R A North 《Nature》1989,339(6227):706-709
The neurohormone 5-hydroxytryptamine (5HT or serotonin) exerts its effects by binding to several distinct receptors. One of these is the M-receptor of Gaddum and Picarelli, now called the 5-HT3 receptor, through which 5-HT acts to excite enteric neurons. Ligand-binding and functional studies have shown that the 5-HT3 receptor is widely distributed in peripheral and central nervous tissue and evidence suggests that the receptor might incorporate an ion channel permeable to cations. We now report the first recordings of currents through single ion channels activated by 5-HT3 receptors, in excised (outside-out) membrane patches from neurons of the guinea pig submucous plexus. Whereas application of acetylcholine activated predominantly a 40-pS channel, 5-HT caused unitary currents apparently through two channels of conductances of 15 and 9 pS, which were reversibly blocked by antagonists of the 5-HT3 receptor. Receptors for amine neurotransmitters, including 5-HT1 and 5-HT2, have previously been thought to transduce their effects through GTP-binding proteins: the direct demonstration that 5-HT3 receptors are ligand-gated ion channels implies a role for 5-HT, and perhaps other amines, as a 'fast' synaptic transmitter.  相似文献   

15.
T Michel  B B Hoffman  R J Lefkowitz 《Nature》1980,288(5792):709-711
Many hormones interact with receptors which stimulate the enzyme adenylate cyclase. Less well characterized ar those receptors which mediate an inhibition of adenylate cyclase activity. However, guanine nucleotides are clearly important in the regulation of both stimulatory and inhibitory receptors. Monovalent cations, notably Na+, regulate many inhibitory receptor systems but apparently not stimulatory receptors. We investigate here the effects of Na+ and guanine nucleotides on the adenylate cyclase-coupled inhibitory alpha 2-adrenergic receptor of the rabbit platelet. Computer modelling of adrenaline competition curves with 3H-dihydroergocryptine (3H-DHE) indicates that adrenaline induces two distinct affinity states of the alpha 2 receptor--one of higher (alpha 2H) and the other of lower (alpha 2L) affinity. Guanyl-5'-yl-imidodiphosphate (Gpp(NH)p) seems to reduce adrenaline affinity to converting the high-affinity state into the low-affinity form of the receptor. In contrast, Na+ reduces adrenaline affinity at both the high- and low-affinity states of the alpha 2 receptor while preserving receptor heterogeneity. Thus, guanine nucleotides and Na+ differ in the manner by which each reduces agonist affinity for the alpha 2-adrenergic receptor.  相似文献   

16.
B Miller  M Sarantis  S F Traynelis  D Attwell 《Nature》1992,355(6362):722-725
Arachidonic acid is released by phospholipase A2 when activation of N-methyl-D-aspartate (NMDA) receptors by neurotransmitter glutamate raises the calcium concentration in neurons, for example during the initiation of long-term potentiation and during brain anoxia. Here we investigate the effect of arachidonic acid on glutamate-gated ion channels by whole-cell clamping isolated cerebellar granule cells. Arachidonic acid potentiates, and makes more transient, the current through NMDA receptor channels, and slightly reduces the current through non-NMDA receptor channels. Potentiation of the NMDA receptor current results from an increase in channel open probability, with no change in open channel current. We observe potentiation even with saturating levels of agonist at the glutamate- and glycine-binding sites on these channels; it does not result from conversion of arachidonic acid to lipoxygenase or cyclooxygenase derivatives, or from activation of protein kinase C. Arachidonic acid may act by binding to a site on the NMDA receptor, or by modifying the receptor's lipid environment. Our results suggest that arachidonic acid released by activation of NMDA (or other) receptors will potentiate NMDA receptor currents, and thus amplify increases in intracellular calcium concentration caused by glutamate. This may explain why inhibition of phospholipase A2 blocks the induction of long-term potentiation.  相似文献   

17.
The breakup of a spiral wave by blockade of sodium and potassium channels in a small-world network of Hodgkin-Huxley neurons is investigated in detail.The influence of ion channel block in poisoned excitable membrane patches of a certain size is measured,by varying channel noise and channel densities resulting from the change in conductance,For example,tetraethylammonium is known to cause a block(poisoning) of potassium channels,while tetrodotoxin blocks sodium channels.We observed the occurrence of spiral waves,which are ordered waves believed to play an important role in facilitating the propagation of electric signals across quiescent regions of the brain.In this paper,the effect of channel block was measured by the factors xK and xNa,which represent the ratios of unblocked,or active,ion channels,to the overall number of potassium or sodium ion channels,respectively.To quantify these observations,we use a simple but robust synchronization measure,which succinctly captures the transition from spiral waves to other collective states,such as broken segments resulting from the breakup of the spiral wave.The critical thresholds of channel block can be inferred from the abrupt changes occurring in plots of the synchronization measure against different values of xK and xNa.Notably,small synchronization factors can be tightly associated with states where the formation of spiral waves is robust to mild channel block.  相似文献   

18.
Purohit P  Mitra A  Auerbach A 《Nature》2007,446(7138):930-933
Muscle contraction is triggered by the opening of acetylcholine receptors at the vertebrate nerve-muscle synapse. The M2 helix of this allosteric membrane protein lines the channel, and contains a 'gate' that regulates the flow of ions through the pore. We used single-molecule kinetic analysis to probe the transition state of the gating conformational change and estimate the relative timing of M2 motions in the alpha-subunit of the murine acetylcholine receptor. This analysis produces a 'Phi-value' for a given residue that reflects its open-like versus closed-like character at the transition state. Here we show that most of the residues throughout the length of M2 have a Phi-value of approximately 0.64 but that some near the middle have lower Phi-values of 0.52 or 0.31, suggesting that alphaM2 moves in three discrete steps. The core of the channel serves both as a gate that regulates ion flow and as a hub that directs the propagation of the gating isomerization through the membrane domain of the acetylcholine receptor.  相似文献   

19.
20.
Tomita S  Adesnik H  Sekiguchi M  Zhang W  Wada K  Howe JR  Nicoll RA  Bredt DS 《Nature》2005,435(7045):1052-1058
AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors mediate fast excitatory synaptic transmission in the brain. These ion channels rapidly deactivate and desensitize, which determine the time course of synaptic transmission. Here, we find that the AMPA receptor interacting protein, stargazin, not only mediates AMPA receptor trafficking but also shapes synaptic responses by slowing channel deactivation and desensitization. The cytoplasmic tail of stargazin determines receptor trafficking, whereas the ectodomain controls channel properties. Stargazin alters AMPA receptor kinetics by increasing the rate of channel opening. Disrupting the interaction of stargazin ectodomain with hippocampal AMPA receptors alters the amplitude and shape of synaptic responses, establishing a crucial function for stargazin in controlling the efficacy of synaptic transmission in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号