首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
求解了含Caputo分数阶导数的分数阶微分方程初值问题 d~αu/dtα+ω~αu(t;α)=h(t),t>0,0≤n-1<α≤n,ω>0, u~(k)(0~+;α)=u_k,k=0,1,…,n-1.利用Laplace变换方法和广义 Mittag-Leffler函数,得到其解为u(t;α)=integral from n=0 to t (r~(α-1)E_α,α(-(ωτ)~α))h(t-τ)dτ+sum from k=0 to n-1 u_kt~kE_(α,1+k)(-(ωt)~α)。  相似文献   

2.
研究分数阶系统的变分原理和运动微分方程.建立了基于Riesz分数阶导数的分数阶Hamilton原理,并由分数阶Hamilton原理推导出了分数阶Lagrange方程和分数阶Hamilton正则方程.算例表明,分数阶Lagrange方程与分数阶Hamilton正则方程给出相同的结果.  相似文献   

3.
基于Lyapunov稳定定理,研究了分数阶混沌系统的同步问题,提出了一种新的分数阶控制器对分数阶混沌系统进行同步控制.新的同步方法能够应用到任意的三维分数阶混沌系统,且具有简单通用、理论严密的特性.通过对分数阶Chen混沌系统和分数阶Lü混沌系统的数值仿真,结果证明了该方法的正确性和有效性.  相似文献   

4.
基于分数阶微积分的模糊分数阶控制器研究   总被引:3,自引:1,他引:3  
曹军义  梁晋  曹秉刚 《西安交通大学学报》2005,39(11):1246-1249,1253
在分析分数阶微积分的基础上,提出了一种新型模糊分数阶比例积分微分控制器.分数阶微积分将传统控制器中的积分和微分的阶数扩展到任意实数,为控制器的设计提供了比传统整数阶更好的性能扩展.结合分数阶比例积分微分控制器和模糊控制逻辑,用分数阶比例积分微分单元代替传统的模糊比例积分微分控制器中的比例积分微分单元,构建了模糊分数阶比例积分微分控制器的结构,采用模糊逻辑推理和Tus-tin离散方法实现了模糊分数阶比例积分微分控制器的计算.最后,用数字仿真方法和不同条件下的对比分析验证了新型模糊分数阶比例积分微分控制器的优良控制特性.研究结果表明,设计的新型模糊分数阶比例积分微分控制器对非线性和参数不确定性具有较强的鲁棒性.  相似文献   

5.
为解决一类含有时滞的分数阶系统控制问题, 提出了一种 Smith 预估分数阶 PI(Proportion Integral)控制策略, 在不消除分数阶系统中的时滞项的情况下, 实现了时滞系统的稳定控制。 通过对分数阶时滞系统进行特性分析, Smith 预估控制能有效克服时滞对分数阶控制系统的不利影响, 并给出了分数阶 PI 控制器参数整定的简单规则, 具有一定的实际应用价值。 同时分析了该分数阶系统的阶次对系统收敛时间的影响, 最后仿真验证了结论的正确性。  相似文献   

6.
分数阶积分方程   总被引:2,自引:0,他引:2  
对分数阶微分方程的初值问题所对应的分数阶积分方程z(t)=∑lk=0Ckkltk+(-λ)Γ(α)∫t0(t-s)α-1z(s)dsα≥1z(t)=∑2l-1k=0CkГ(1+kα2l)tkα/2l+(-λ)Г(α)∫t0(t-s)α-1z(s)dsl=0,1,2,…α≥1利用Melin变换和Fox函数求出的解为z(t)=∑lk=0∑∞n=0Ck(-λ)nГ(1+k+nα)tk+nα和z(t)=∑2l-1k=0Ck∑∞n=0(-λ)nГ(1+nα+kα2l)tnα+kα2l  相似文献   

7.
简要介绍了用以描述物理和力学中的中间过程(intermediate processes)和临界现象(critical phenomena)的分数阶算子理论、方法的最新进展。分析了分数阶算子对湍流速度场的不规则起伏、Brown运动和粘弹性材料记忆性等经典力学和线性物理问题的挑战。总结了分数阶算子在线性和非线性固体遗传动力学、非Newton流体力学、生物物理和生物力学、分数阶反常扩散与随机游走理论和DLA理论等复杂系统中的应用。包括了作者近年来在这一领域所做的工作。最后,对这一学科的发展进行了展望。  相似文献   

8.
对带有分数阶边界条件一维分数阶扩散方程进行了数值研究,分别利用移位的和标准的Grünwald-Letnikov分数阶算子对方程中Riemann-Liouville空间分数阶导数和分数阶边界条件中Riemann-Liouville空间分数阶导数进行了离散,在此基础上建立了一种隐式有限差分方法。然后分析了该方法的解的存在唯一性、相容性、稳定性和收敛性。最后通过数值实例验证了该方法的有效性。  相似文献   

9.
分数阶控制系统的特征根方程多为复变量S的无理多项式,将无理多项式转化为有理多项式非常困难.本文通过考察控制系统的频率特性,提出利用Nyquist判据和对数频率稳定判据来判断分数阶控制系统的稳定性.  相似文献   

10.
分数阶Relaxation-Oscillation方程的一种分数阶预估-校正方法   总被引:1,自引:0,他引:1  
涉及松弛(Relaxation)和震动(0scmation)基本现象的过程是与物理密切相关;从数学观点来看。众所周知由时间分数阶导数a,0〈a≤1或1〈a≤2来控制的现象。被称之为分数阶松弛或分数阶震动现象.本考虑分数阶Relaxation-Oscillation方程.证明了分数阶Relaxation-Oscillation方程解的存在惟一性,并利用格林函数给出了它的解析解.我们提出一种计算有效的分数阶预估一校正方法,导出了其误差估计.最后给出数值例子.  相似文献   

11.
本文对带有分数阶边界条件的一维Riesz分数阶扩散方程进行了数值研究.本文利用分数阶中心差分公式对方程中的Riemann-Liouville空间分数阶导数进行离散,并利用标准的Grünwald-Letnikov分数阶算子对分数阶边界条件中的Riemann-Liouville空间分数阶导数进行离散,进而建立了一种隐式有限差分格式,然后讨论了该方法的解的存在唯一性,分析了该格式的相容性、稳定性和收敛性.最后本文通过数值实例验证了该方法的有效性.  相似文献   

12.
图像加密技术一直是图像处理中的热点问题,把分数阶微积分引入图像加密技术中更是当代前沿研究课题.本文基于分数阶微积分及分数阶Fourier变换的方法,提出了一种新的数字水印算法.该算法在分数阶傅里叶域嵌入水印,分数阶微积分阶次以及分数阶Fourier变换的变换阶数为数字水印的安全性提供了保证.随后作者用相关性检测的方法来提取水印.最后作者通过对算法仿真以及加密图像的抗攻击性能进行测试,发现本文提出的数字水印算法有较好的不可感知性,且对噪声、旋转、剪切等攻击具有良好的鲁棒性.  相似文献   

13.
考虑非线性分数阶常微分方程组,利用Riemann-Liouville分数阶导数的高阶近似,建立分数阶微分方程组的高阶差分格式,并证明了该方法的相容性、收敛性和稳定性.最后给出数值例子,证实了分数阶高阶近似法是解非线性分数阶常微分方程组的有效方法.  相似文献   

14.
在传统的数字指纹技术中,随着用户的增多,用户指纹的唯一性和有限的指纹长度之间产生了矛盾.针对这一矛盾,根据分数阶混沌的初值敏感和随机特性,提出了基于分数阶混沌动力系统的数字指纹生成方法,大大增加了用户的容量,而且速度快,安全性高,把分数阶混沌用于指纹编码,抗合谋攻击性更强.另外,为了增加数字指纹的嵌入空间,提高安全性,进一步提出了使用4级离散分数阶小波变换对载体图像进行处理,与传统小波变换相比,分数阶小波变换增加了阶次作为密钥,安全性更高,并选择把数字指纹嵌入到高尺度下的高频子带中,鲁棒性和信息隐藏量都得到了改善.  相似文献   

15.
众所周知,一致格子上分数阶和分与分数阶差分的思想概念也是最近几年才兴起的,并且在该邻域得到了很大的发展.但是在非一致格子x(z)=c1z2+c2z+c3或者x(z)=c1qz+c2q-z+c3上,分数阶和分与分数阶差分的定义是什么,这是一个十分复杂和有趣的问题.本文首次提出非一致格子上分数阶和分与Riemann-Lio...  相似文献   

16.
本文通过分数阶Fourier变换定义了分数阶(互)模糊函数,并探讨了它的性质.作者首先说明当回波时延为!0,频偏为"0时,回波的分数阶模糊函数模的峰值点在(!,u)平面内移动了(!0,"0sin#+!0cos#).但是要注意的是,(0,0)并不一定是分数阶模糊函数模的极大值点.然后作者进一步说明当参考信号为二次调频信号时,分数阶模糊函数有一个冲激,具有类似图钉形的良好性质,因此在雷达动目标检测中有良好的应用前景.  相似文献   

17.
研究一类分数阶微分方程非线性边值问题的存在性,利用不动点定理,得到了非线性边值问题至少存在1个解的充分条件.  相似文献   

18.
分数阶系统稳定性分析   总被引:1,自引:0,他引:1  
介绍了分数阶系统稳定性定义及其判据,在此基础上,研究了相同条件下不同阶系统的稳定性,给出了系统稳定的阶次范围。理论证明分析了该方法的正确性,仿真结果表明该方法的有效性。  相似文献   

19.
给出左、右Riemann-Liuville分数阶微积分的一些性质.  相似文献   

20.
讨论了具有3个分数阶导数参数的Bloch方程组,其解通过Laplace变换得到,可用H Fox函数表示。图形显示,经典Bloch方程组的解为本研究的特例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号