首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
C Montell  E F Fisher  M H Caruthers  A J Berk 《Nature》1983,305(5935):600-605
A single U leads to G transversion in the 3' consensus sequence AAUAAA of the adenovirus early region 1A gene was constructed and the effect of this mutation on processing of the 3' end of the nuclear early region 1A RNAs was analysed. The results demonstrate that the intact AAUAAA is not required for RNA polyadenylation but is required for the cleavage step preceding polyadenylation to occur efficiently.  相似文献   

3.
4.
5.
J Ahringer  J Kimble 《Nature》1991,349(6307):346-348
In the Caenorhabditis elegans hermaphrodite germ line, sperm and then oocytes are made from a common pool of germ-cell precursors. The decision to differentiate as a sperm or an oocyte is regulated by the sex-determining gene, fem-3. Expression of fem-3 in the hermaphrodite germ line directs spermatogenesis and must be negatively regulated to allow the switch to oogenesis. In adult hermaphrodites (which are producing oocytes), most fem-3 RNA is found in the germ line, consistent with both the requirement for fem-3 in hermaphrodite spermatogenesis and the maternal effects of fem-3 on embryonic sex determination. Whereas loss-of-function mutants in fem-3 produce only oocytes, hermaphrodites carrying any of nine fem-3 gain-of-function (gf) mutations make none; instead sperm are produced continuously and in vast excess over wild-type amounts. Genetic analyses suggest that fem-3(gf) mutations have escaped a negative control required for the switch to oogenesis. Here we report that all nine fem-3(gf) mutants carry sequence alterations in the fem-3 3' untranslated region (3' UTR). There is no increase in the steady-state level of fem-3(gf) RNA over wild-type, but there is an increase in the polyadenylation of fem-3(gf) RNA that is coincident with the unregulated fem-3 activity. Results of a titration experiment support the hypothesis that a regulatory factor may bind the fem-3 3' UTR. We speculate that fem-3 RNA is regulated through its 3' UTR by binding a factor that inhibits translation, and discuss the idea that this control may be part of a more general regulation of maternal RNAs.  相似文献   

6.
7.
Burns DM  D'Ambrogio A  Nottrott S  Richter JD 《Nature》2011,473(7345):105-108
Cytoplasmic polyadenylation-induced translation controls germ cell development, neuronal synaptic plasticity and cellular senescence, a tumour-suppressor mechanism that limits the replicative lifespan of cells. The cytoplasmic polyadenylation element binding protein (CPEB) promotes polyadenylation by nucleating a group of factors including defective in germline development 2 (Gld2), a non-canonical poly(A) polymerase, on specific messenger RNA (mRNA) 3' untranslated regions (UTRs). Because CPEB regulation of p53 mRNA polyadenylation/translation is necessary for cellular senescence in primary human diploid fibroblasts, we surmised that Gld2 would be the enzyme responsible for poly(A) addition. Here we show that depletion of Gld2 surprisingly promotes rather than inhibits p53 mRNA polyadenylation/translation, induces premature senescence and enhances the stability of CPEB mRNA. The CPEB 3' UTR contains two miR-122 binding sites, which when deleted, elevate mRNA translation, as does an antagomir of miR-122. Although miR-122 is thought to be liver specific, it is present in primary fibroblasts and destabilized by Gld2 depletion. Gld4, a second non-canonical poly(A) polymerase, was found to regulate p53 mRNA polyadenylation/translation in a CPEB-dependent manner. Thus, translational regulation of p53 mRNA and cellular senescence is coordinated by Gld2/miR-122/CPEB/Gld4.  相似文献   

8.
Telomerase primer specificity and chromosome healing   总被引:37,自引:0,他引:37  
L A Harrington  C W Greider 《Nature》1991,353(6343):451-454
Chromosome healing by de novo telomere addition at nontelomeric sites has been well characterized in several organisms. The Tetrahymena telomerase ribonucleoprotein uses an internal RNA template to catalyse d(TTGGGG)n telomere addition to the 3' end of telomeric sequence in vitro and in vivo. Studies of telomerase RNA indicated that hybridization of the RNA template region, 5'-CAACCCCAA-3', to the 3' end of single-stranded telomeric oligonucleotides might be important for primer recognition and utilization. The apparent requirement of telomerase for pre-existing telomeric sequence has raised questions regarding its role in chromosome healing. We report here that Tetrahymena telomerase can specifically elongate single-stranded DNA oligonucleotides whose termini are not complementary to the RNA template sequence 5'-CAACCCCAA-3'. These data suggest that telomerase may be able to heal chromosomes directly in vivo.  相似文献   

9.
10.
11.
Characterization of ribosomal frameshifting in HIV-1 gag-pol expression   总被引:119,自引:0,他引:119  
T Jacks  M D Power  F R Masiarz  P A Luciw  P J Barr  H E Varmus 《Nature》1988,331(6153):280-283
  相似文献   

12.
13.
Weitzer S  Martinez J 《Nature》2007,447(7141):222-226
RNA interference allows the analysis of gene function by introducing synthetic, short interfering RNAs (siRNAs) into cells. In contrast to siRNA and microRNA duplexes generated endogenously by the RNaseIII endonuclease Dicer, synthetic siRNAs display a 5' OH group. However, to become incorporated into the RNA-induced silencing complex (RISC) and mediate target RNA cleavage, the guide strand of an siRNA needs to display a phosphate group at the 5' end. The identity of the responsible kinase has so far remained elusive. Monitoring siRNA phosphorylation, we applied a chromatographic approach that resulted in the identification of the protein hClp1 (human Clp1), a known component of both transfer RNA splicing and messenger RNA 3'-end formation machineries. Here we report that the kinase hClp1 phosphorylates and licenses synthetic siRNAs to become assembled into RISC for subsequent target RNA cleavage. More importantly, we reveal the physiological role of hClp1 as the RNA kinase that phosphorylates the 5' end of the 3' exon during human tRNA splicing, allowing the subsequent ligation of both exon halves by an unknown tRNA ligase. The investigation of this novel enzymatic activity of hClp1 in the context of mRNA 3'-end formation, where no RNA phosphorylation event has hitherto been predicted, remains a challenge for the future.  相似文献   

14.
Park JE  Heo I  Tian Y  Simanshu DK  Chang H  Jee D  Patel DJ  Kim VN 《Nature》2011,475(7355):201-205
A hallmark of RNA silencing is a class of approximately 22-nucleotide RNAs that are processed from double-stranded RNA precursors by Dicer. Accurate processing by Dicer is crucial for the functionality of microRNAs (miRNAs). The current model posits that Dicer selects cleavage sites by measuring a set distance from the 3' overhang of the double-stranded RNA terminus. Here we report that human Dicer anchors not only the 3' end but also the 5' end, with the cleavage site determined mainly by the distance (~22 nucleotides) from the 5' end (5' counting rule). This cleavage requires a 5'-terminal phosphate group. Further, we identify a novel basic motif (5' pocket) in human Dicer that recognizes the 5'-phosphorylated end. The 5' counting rule and the 5' anchoring residues are conserved in Drosophila Dicer-1, but not in Giardia Dicer. Mutations in the 5' pocket reduce processing efficiency and alter cleavage sites in vitro. Consistently, miRNA biogenesis is perturbed in vivo when Dicer-null embryonic stem cells are replenished with the 5'-pocket mutant. Thus, 5'-end recognition by Dicer is important for precise and effective biogenesis of miRNAs. Insights from this study should also afford practical benefits to the design of small hairpin RNAs.  相似文献   

15.
J R Parnes  R R Robinson  J G Seidman 《Nature》1983,302(5907):449-452
beta 2-Microglobulin is the small, relatively invariant subunit of a family of cell-surface glycoproteins encoded within the major histocompatibility complex (MHC). Proteins associated with beta 2-microglobulin in the mouse include the classical transplantation antigens (H-2K, D and L), the thymus leukaemia antigen (TL) and certain haematopoietic cell differentiation antigens (Qa-1 and Qa-2). The genes encoding these proteins are members of a large, multigene family. In contrast, beta 2-microglobulin is encoded by a single copy gene on mouse chromosome 2 (refs 5, 6). We have shown that this gene consists of four coding blocks separated by three intervening sequences. We now demonstrate that the single beta 2-microglobulin gene is transcribed into at least two different size classes of mRNA that differ in the lengths of their 3' untranslated regions. We further show that three polyadenylation signals and a poly (A) tail are encoded at the 3' end of the gene.  相似文献   

16.
Transfer RNA (tRNA) is produced as a precursor molecule that needs to be processed at its 3' and 5' ends. Ribonuclease P is the sole endonuclease responsible for processing the 5' end of tRNA by cleaving the precursor and leading to tRNA maturation. It was one of the first catalytic RNA molecules identified and consists of a single RNA component in all organisms and only one protein component in bacteria. It is a true multi-turnover ribozyme and one of only two ribozymes (the other being the ribosome) that are conserved in all kingdoms of life. Here we show the crystal structure at 3.85 A resolution of the RNA component of Thermotoga maritima ribonuclease P. The entire RNA catalytic component is revealed, as well as the arrangement of the two structural domains. The structure shows the general architecture of the RNA molecule, the inter- and intra-domain interactions, the location of the universally conserved regions, the regions involved in pre-tRNA recognition and the location of the active site. A model with bound tRNA is in agreement with all existing data and suggests the general basis for RNA-RNA recognition by this ribozyme.  相似文献   

17.
18.
A 1.4Kb DNA fragment containing 3‘ flanking sequence of fibroin gene of silkworm, Antheraea perny/, was obtained from the silk gland‘s mRNA of 5th larva. Analysis of this sequence with another A. pemyi fibroin protein (accession No. 1383241) revealed that it consists of a completely open reading frame (ORF), which includes 14 polyalanine-containing units (motifs) and 100bp 3‘-UTR. The sequence of the predicted amino acid reveals the highest level of overall iden-tity (90%) with 1383241. It was found that it loses a repeat region at the upstream of TAA codon and some mutations. A putative polyadenylation signal AATAAA tail was found in position 1300, which follows the termination codon.  相似文献   

19.
A Molla  S K Jang  A V Paul  Q Reuer  E Wimmer 《Nature》1992,356(6366):255-257
High mutation rates have driven RNA viruses to shorten their genomes to the minimum possible size. Mammalian (+)-strand RNA viruses and retroviruses have responded by reducing the number of cis-acting regulatory elements, a constraint that has led to the emergence of the polyprotein. Poliovirus is a (+)-stranded picornavirus whose polyprotein, encoded by an open reading frame spanning most of the viral RNA, is processed by virus-encoded proteinases. Despite their genetic austerity, picornaviruses have retained long 5' untranslated regions, which harbour cis-acting elements that promote initiation of translation independently of the uncapped 5' end of the viral messenger RNA. These elements are termed 'internal ribosomal entry sites' and are formed from highly structured RNA segments of at least 400 nucleotides. How these elements function is not known, but special RNA-binding proteins may be involved. The ribosome or its 40S subunit probably binds at or near a YnXmAUG motif (where Y is a pyrimidine and X is a purine) at the 3' border of the internal ribosomal entry site, which either provides the initiating codon or enables the ribosome to translocate to one downstream (E.W. et al., submitted). Initiation from most eukaryotic messenger RNAs usually occurs by ribosomal recognition of the 5' and subsequent scanning to the AUG codon. Here we describe a genetic strategy for the dissection of polyproteins which proves that an internal ribosomal entry site element can initiate translation independently of the 5' end.  相似文献   

20.
G Garriga  A M Lambowitz  T Inoue  T R Cech 《Nature》1986,322(6074):86-89
Group I introns include many mitochondrial ribosomal RNA and messenger RNA introns and the nuclear rRNA introns of Tetrahymena and Physarum. The splicing of precursor RNAs containing these introns is a two-step reaction. Cleavage at the 5' splice site precedes cleavage at the 3' splice site, the latter cleavage being coupled with exon ligation. Following the first cleavage, the 5' exon must somehow be held in place for ligation. We have now tested the reactivity of two self-splicing group I RNAs, the Tetrahymena pre-rRNA and the intron 1 portion of the Neurospora mitochondrial cytochrome b (cob) pre-mRNA, in the intermolecular exon ligation reaction (splicing in trans) described by Inoue et al. The different sequence specificity of the reactions supports the idea that the nucleotides immediately upstream from the 5' splice site are base-paired to an internal, 5' exon-binding site, in agreement with RNA structure models proposed by Davies and co-workers and others. The internal binding site is proposed to be involved in the formation of a structure that specifies the 5' splice site and, following the first step of splicing, to hold the 5' exon in place for exon ligation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号