共查询到18条相似文献,搜索用时 62 毫秒
1.
滚动轴承是各种机械设备中最常见的零部件,同时也是易损坏的零件之一.机械的许多故障都与滚动轴承有关,它的运行状态是否正常往往直接影响到整台机器的性能.因此开展对滚动轴承的故障诊断具有很现实的意义.再分析了支持向量机的基本理论后,提出了基于支持向量机的滚动轴承故障诊断方法,并且进行了MATLAB仿真实验,验证支持向量机的诊断效果,实验结果表明此方式适用于滚动轴承故障诊断. 相似文献
2.
针对支持向量机(SVM)参数的选取困难,提出了利用改进的遗传算法(IGA)对其参数进行优化.IGA采用代沟选择和可变交叉概率,确保当前种群中最适应的个体总是被连续传播到下一代,并使进化后期优化的对象比较容易稳定,计算效率提高.将基于改进遗传算法优化的SVM(IGA-SVM)训练算法应用于某醋酸共沸精馏塔的故障诊断,仿真... 相似文献
3.
4.
针对变压器传统检测方法的局限性,本文提出了一种基于支持向量机的电力变压器故障诊断方法,并构建了相应的数学模型。仿真结果表明,该模型能有效提高变压器故障诊断的准确率。 相似文献
5.
基于支持向量机的故障诊断方法 总被引:12,自引:0,他引:12
提出了基于支持向量机的故障诊断方法和步骤。诊断实例表明,与神经网络故障诊断方法相比,诊断小样本分析的支持向量机故障诊断方法具有分类能力强、推广能力好的特点。 相似文献
6.
改进的M-ary支持向量机模型及其在变压器故障诊断中的应用 总被引:2,自引:0,他引:2
使用M-ary支持向量机进行基于油中溶解气体分析的变压器故障诊断研究.分析结果表明,M-ary支持向量机算法简单,与一对一支持向量机的诊断精度可以比拟.在此基础上,还对常用的M-ary支持向量机模型进行了改进,将各二类分类器的输出计算值直接使用另一支持向量机进行组合,可以更好地反映各分类器之间的非线性关系,从而使新模型具有更高的分类精度.变压器的应用实例证明了改进方法的有效性和优越性. 相似文献
7.
基于粗糙集的支持向量机故障诊断 总被引:2,自引:0,他引:2
该文结合粗糙集属性约简及支持向量机分类机理,提出了一种新的故障诊断方法。首先利用粗糙集对过程特征变量进行约简,去除冗余的过程信息,并降低过程数据的维数,获得具有代表性的过程特征信息。基于该特征信息建立支持向量分类机用于故障的诊断。以高压直流输电系统为例,对交流单相接地故障和直流接地故障进行诊断,诊断时间分别为12ms和11ms,诊断正确率分别为98.8%和96.8%。 相似文献
8.
基于遗传编程和支持向量机的故障诊断模型 总被引:12,自引:0,他引:12
提出了一种基于遗传编程和支持向量机的故障诊断模型.该模型利用遗传编程对传统的时域指标进行特征选择和提取,得到更能反映信号本质的特征,与其他特征组合后作为识别特征输入多类支持向量机,实现了对机器不同类型故障的识别.实验结果表明,同传统时域指标相比,经过遗传编程选择和提取的特征对轴承的故障具有更好的识别能力,进而提高了多类支持向量机的分类准确性. 相似文献
9.
基于支持向量机的发动机故障诊断 总被引:4,自引:0,他引:4
针对发动机的故障特点,提出了一种基于主分量分析和支持向量机的发动机故障诊断方法.利用小波包对声级计采集到的解放CA141型汽车发动机声音信号进行特征提取,应用主分量分析方法在不损失有效信息的情况下,将原始特征向量中的冗余信息约简,在此基础上通过支持向量机对发动机故障进行分类.诊断结果表明,该方法在保证较高诊断精度的同时,可将支持向量机的训练时间缩短1/3,从而提高了故障诊断效率. 相似文献
10.
遗传支持向量机在电力变压器故障诊断中的应用 总被引:6,自引:0,他引:6
针对支持向量机中的参数通常靠交叉试验来确定的状况,提出了遗传支持向量机,即使用遗传算法来优化支持向量机中的参数,并将之进一步应用在基于溶解气体分析的变压器故障诊断中.以变压器油中5种主要特征气体作为支持向量机的输入,以7种变压器状态作为相应的输出,选用径向基核,使用遗传算法得到优化参数,充分发挥了支持向量机具有较高泛化能力的优势.实验表明,本文方法能够在较大范围内准确地找到相应的优化参数,并能有效地进行变压器的故障诊断. 相似文献
11.
针对电力推进船舶逆变器存在的开关器件开路故障诊断问题,提出一种基于三分类支持向量机的故障诊断方法。利用对称分量分析方法获得逆变器输出正序瞬时值分量,通过对信号进行小波包分解,得到不同开关元件故障下的小波能量,规范化后作为对应开关器件故障特征。根据开关器件位置和逆变器输出波形特点对开关器件进行分组,利用三分类支持向量机实现故障分类。仿真分析结果表明,该三分类支持向量机故障分类正确率94.29%,诊断方法有效。 相似文献
12.
基于小波包和支持向量机的传感器故障诊断方法 总被引:2,自引:0,他引:2
针对自确认压力传感器的故障诊断问题,提出了一种基于小波包变换和支持向量机的传感器故障诊断方法。该方法对传感器输出信号进行三层小波包分解,提取各个节点的小波包系数,对每个节点的小波包系数通过一定的削减算法增强故障特征,然后利用重构的时域信号计算各个节点的能量以及整个信号的削减比作为特征向量,以此作为输入来建立支持向量多分类机,判断传感器的故障类型。对自确认压力传感器、温度和流量传感器的故障诊断结果表明,该方法能有效地应用于传感器的故障诊断中。 相似文献
13.
基于离散粒子群和支持向量机的故障诊断方法 总被引:2,自引:0,他引:2
针对与故障不相关的变量会影响分类器性能,从而导致故障诊断正确率下降,提出一种将离散粒子群算法(PSO)与支持向量机(SVM)相结合寻找故障特征变量的优化算法。该算法实现了数据降维和故障特征保留,有效地提高了故障诊断性能。基于连续搅拌釜式反应器(CSTR)的仿真实例验证了该算法古白有诗性. 相似文献
14.
基于相量分析与支持向量机的交流电路故障诊断 总被引:2,自引:0,他引:2
针对工作在交流状态下的模拟电路,提出采用相量分析和支持向量机(SVM)相结合的方法,实现交流电路的故障诊断.首先构建交流电路的数学模型,编写相量分析程序,得到输出信号的幅度和相位;对电路的所有状态进行运算,得到故障样本和测试样本.然后用故障样本对SVM进行训练;最后用训练好的SVM对测试样本进行模式识别.通过一个交流电路故障诊断的实例表明,该方法具有算法简单、泛化能力强等优点,可以快速准确地判断出故障元件. 相似文献
15.
为提高支持向量机在机械故障诊断测试中的分类正确率,将模拟退火算法与支持向量机相结合,用模拟退火算法优化支持向量机核函数及其参数,再将故障特征输入支持向量机进行故障识别.诊断实例表明,该方法与传统支持向量机方法相比能得到较高的诊断精度. 相似文献
16.
To deal with multi-source multi-class classification problems, the method of combining multiple multi-class probability support vector machines (MPSVMs) using Bayesian theory is proposed in this paper. The MPSVMs are designed by mapping the output of standard support vector machines into a calibrated posterior probability by using a learned sigmoid function and then combining these learned binary-class probability SVMs. Two Bayes based methods for combining multiple MPSVMs are applied to improve the performance of classification. Our proposed methods are applied to fault diagnosis of a diesel engine. The experimental results show that the new methods can improve the accuracy and robustness of fault diagnosis. 相似文献
17.
Many industrial process systems are becoming more and more complex and are characterized by distributed features. To ensure such a system to operate under working order, distributed parameter values are often inspected from subsystems or different points in order to judge working conditions of the system and make global decisions. In this paper, a parallel decision model based on Support Vector Machine (PDMSVM) is introduced and applied to the distributed fault diagnosis in industrial process. PDMSVM is convenient for information fusion of distributed system and it performs well in fault diagnosis with distributed features. PDMSVM makes decision based on synthetic information of subsystems and takes the advantage of Support Vector Machine. Therefore decisions made by PDMSVM are highly reliable and accurate. 相似文献
18.
采用合成核函数构造支持向量机模型,运用粒子群优化算法(PSO)对模型参数进行参数寻优,利用UCI数据集的数据进行分类验证.与单核SVM相比,该方法具有更好的分类能力和运算速度.将合成核SVM应用到风机齿轮箱的故障诊断中,取得了良好的效果. 相似文献