首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
给出矩阵A的最小多项式m(λ)的两个性质:(1)n阶矩阵A的全体实系数多项式所成的线性空间W的维数等于A的最小多项式m(λ)的次数k;(2)对于次数大于零的任意多项式f(λ),f(A)为非退化的充分必要条件是f(λ)与m(λ)互素.并举例说明了矩阵最小多项式在解决某些问题时的有效性.  相似文献   

2.
设σ是数域P上的n维向量空间V的线性变换,λ是σ的特征值,证明了σ的特征子空间Vλ与基的取法无关.  相似文献   

3.
幂零矩阵和幂零线性变换   总被引:2,自引:0,他引:2  
用T(n,F)表示数域F上全体n阶严格上三角矩阵作成的幂零结合代数,证明了对于n维线性空间V,必存在V的一组基使得由V的幂零线性变换生成的幂零代数N中任意元素在该基下的矩阵均为严格上三角矩阵;由V的幂零线性变换生成的最大的幂零代数均同构于T(n,F).  相似文献   

4.
设V是特征数2的除环△上的n维向量空间,g(x,y)是V上的一个Hermite纯量积。本文给出了用矩阵的初等变换得到V的正交基的构造性证明。当V是实数域上的有限维向量空间,g(x,y)是正定对称纯量积时,本文给出了用矩阵的初等变换得到笛卡尔基的方法。这一方法推广了Schmidt正交化方法。作为推论,我们可以利用矩阵的初等变换把一个正定矩阵分解为两个三角矩阵的积,把一个非奇异实矩阵分解为一个正交矩阵与一个上三角矩降的乘积。  相似文献   

5.
数域空间     
本文试图通过向量空间的定义,按照普通数的加法与乘法定义出数域空间,进而讨论构成数域空间的充分必要条件及其维数。 1 向量空间与数域空间的概念定义1 令V是一个非空集合,F是一个数域,当它满足下列条件时,称V是数域F上的一个向量空间(或线性空间)。其中V中的元素称为向量,F中的元素称为数(或纯量)。  相似文献   

6.
本文给出多项式f(λ)=(λ-i)(λ-j)[λ(λ-1)…(λq)],1≤i≤j≤是 q T-多项式的一个充分必要条件,并给出f(λ)=λ(λ-1)~(n_1)(λ-2)~(n_2)…(λ-q)~(n_q)是 T-多项式的一个必要条件,其中 q≥4.n_1,n_2,…,n_q 是正整数.  相似文献   

7.
由矩阵A定义了n阶矩阵空间Mn(F)上的若干线性变换φA,研究了其线性变化的对角化问题:在A可以对角化的前提下,利用A的特征根与特征向量得到了φA的特征根和特征向量,进而得出φA可以对角化.用A的互异特征根的重数得到了KerφA的维数和范围,用φA的特征向量得到了KerφA的基.  相似文献   

8.
设V为一个γ维向量空间,σ为V中一ρ次,-零变换,则V可表为一些维数不大于ρ的关于σ为巡回的子空间的直接和。上面这个定理在马尔印夫(1)的书和哈尔姆氏(2)的书中都有证明,这些证明都依据下面的引理。设V’为线性变换σ_1的不变子空间,z∈V适合σ_1t_z∈V′但σ_1~(-1)V′,则子空间{z,σ_1z,…σ_1t-1z}∩V’=0。本文目的在仍然依据这个引理给出上面的定理的一个非常明晰的证明。  相似文献   

9.
域F上有限维向量空间V的线性算子τ∈L(V)可对角化当且仅当它的极小多项式mτ(x)是F上互异一次因式之积.文章将利用线性算子τ的特征值的初等对称多项式给出此结果的一个新证明.  相似文献   

10.
双圈图的无符号拉普拉斯特征多项式的系数   总被引:2,自引:2,他引:0  
设图G为简单图,G的无符号拉普拉斯矩阵Q(G)=D(G)+A(G),其特征多项式记为φ(G,λ)=∑n i=0pi(G)λn-i.给出了双圈图的无符号拉普拉斯特征多项式的常数项pn(G),并证明了pn(G)仅与双圈图的基图有关.  相似文献   

11.
在〔1〕的第250页定理中,当F的特征数是P,n就不能被户整除,否则定理不成立,但我们可以证明如下结果: 定理.若F的特征数为素数p,K是F的P次循环体,则K=F(r),r是F〔x〕中不可约多项式 (x~p-x-α)〔记为(*)〕的根。证明:因K是F的P次循环体,∴K是F的P次可离正规体,且K关于F的Galois群是一个P次循环群G。设G=(σ),由引理2,有α∈K,使θ=α σ(α) σ~2(α) 0(o) … σ~(p-1)(α)≠0。  相似文献   

12.
设P是任一个数域,V是P上的有限维线性空间,σ是V的一个线性变换,对于V中任意m个线性无关的向量α_1,α_2,…,α_m,由σ(α_1),σ(α_2),…,σ(α_m)生成的子空间L(σ(α_1),σ(α_2),…,σ(α_m))的基的一种确定方法被给定。  相似文献   

13.
准正交矩阵   总被引:1,自引:0,他引:1  
定义了准正交矩阵并推出下列结论:1)n维欧氏空间的一个正交变换关于任意基的矩阵是准正矩阵;2)对于任意一个n阶准正交矩阵,如果n维欧氏空间的一个线性变换在某基下的矩阵为A,则该线性变换为正交交换;3)若A为准正交矩阵,则有I)A的特征根的模为1,Ⅱ)|A|等于1或-1,Ⅲ)若λ是A的特征根,则1/λ也是,Ⅳ)A的伴随矩阵A^*也是准正交的。  相似文献   

14.
等积λ矩阵     
给出等积λ矩阵的定义之后,证明了下列定理:1.任意λ矩阵A(λ)都等积于对角形矩阵D(λ);2.等价矩阵必是等积λ矩阵;3.两个λ矩阵等积的充分必要条件是它们的秩相等及其初等因子的乘积相等;4.A与B等迹的充分必要条件是它们的特征矩阵~λE—A和~λE—B等积。  相似文献   

15.
本文利用建立的矩阵的特征多项式的系数与其迹的关系,证明了下列结论:n阶方阵A具有m(0≤m≤n)重非零特征根a,n-m重零特征根的充分必要条件是tr(A~k)=ma~k,k=1,2,…,n.并由此给出了几大类矩阵具有多重特征根的条件。运用本文方法,求上述n阶方阵A的非o多重特征根a可通过矩阵的元素直接求出,而不需要求矩阵的特征多项式。  相似文献   

16.
主要研究冠的拉普拉斯谱.设G1 G2是两个简单连通图G1和G2的冠,L1是G1的拉普拉斯矩阵,μ1,μ2,…,μm是G2的拉普拉斯谱,且0=μ1<μ2≤…≤μm,利用分块矩阵证明了G1 G2的拉普拉斯矩阵L的特征多项式|λI-L|=[Πmi=2(λ-1-μi)n]-L1-(λ-m-1)IλI(λ-1)I,其中|V(G1)|=n,|V(G2)|=m.  相似文献   

17.
证明了如下结果:(1)如果X=∏τ∈∑Xτ是λ-超仿紧空间,则X是σ-集体正规空间当且仅当F∈∑ω,X=∏τ∈∑Xτ是σ-集体正规空间。(2)设X=∏i∈ωXi是可数仿紧的,则下列三条等价:X是σ-集体正规的;F∈[ω]ω,X=∏i∈FXi是σ-集体正规的;n∈ω,∏i≤nXi是σ-集体正规的。  相似文献   

18.
设X是复B-空间,B(X)是X上有界线性算子全体,C是复平面,F是C的一切闭子集类,我们引入一类算子,并研究它的谱理论,算子T∈B(X)称为(AC)算子,若T有性质(A)与(C),我们证明:(1)T∈B(X)是(AC)算子当且仅当对F到X的闭子空间类的同态X(·)满足下述条件:(ⅰ)(F_1∩F_2)=X(F_1)∩X(F_2);(ⅱ)X(φ)={0},X(C)=X;(ⅲ)TX(F)X(F);(ⅳ)σ(T|X(F))F;(ⅴ)对x∈X若存在解析函数x(λ):CF→X,使(λI-T)x(λ)=x,则x(λ)∈X(F),λ∈CF,(2)设T∈B(X)是(AC)算子,则对任何F∈F,有:(ⅰ)若X_T(F)≠{0},则F∩σ(T)≠φ;(ⅱ)若X_T(F)={0},则F∩σ_p(T)=φ,(3)设T∈B(X),σ(T)位于光滑Jordan曲线Γ上,又对每个z∈Γ,存在Γ邻域V上非零解析函数f(z),使 ‖f(z)R(λ,T)‖≤M_z,λ≠z,λ∈V,M_z>0,则T是(AC)算子。  相似文献   

19.
本文证明 Cayley-Hamilton 定理的一个推广:设 R 是含单位元的交换环,M_n(R)[λ]是 R 的矩阵环 M_n(R)上的多项式环,如果 F(λ)∈M_n(R)(λ),F(A)=0,(?)(λ)=detF(λ),则(?)(A)=0.  相似文献   

20.
λ一矩阵Q(λ)可以表示为λ的矩阵多项式的形式 Q(λ)=Q_nλ~n+Q_(n-1)λ~(n-1)+…+Q_1λ+Q_o这里的诸Q_t是同级的数字矩阵。两个λ的矩阵多项式的加法、乘法和一个λ的多项式、一个λ的矩阵多项式的乘法,由λ一矩阵对应的矩阵运算确定,由此导出:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号