首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文分析了全异步轧制时变形区的应力状态。其应力状态是,在用全异步带张的拉直法冷轧薄带材时为轧制压力p、拉应力σ_x以及由于异步值而产生的切应力τ。此切应力不仅有清除同步轧制时“摩擦峰”的作用,而且还对轧件的塑性变形起切变作用。故其塑性方程式为:(σ_x p)~2 4τ~2=4K~2。据此,我们推导出了全异步轧制时的轧制力公式,并用此公式计算的轧制力值同全异步轧制的实验数据进行了比较。  相似文献   

2.
热带钢连轧机精轧轧辊磨损计算理论   总被引:5,自引:1,他引:4  
对四辊热连轧机精轧轧辊磨损进行了研究 ,除考虑了轧件的轧制长度外 ,还考虑了轧制压力和辊间压力的横向不均匀分布 ,轧件在辊缝中的纵向和横向滑动 ,轧件偏离轧制中心线的影响以及 CVC辊型对磨损的影响 ,以实测数据为基础 ,建立了支承辊和工作辊磨损分布的理论计算模型 ,计算结果与实测结果吻合很好 ,对各种轧机轧辊磨损的研究有一定的参考价值。  相似文献   

3.
本文在计算冷轧薄板接触弧长度和轧制压力时,不仅考虑轧辊弹性变形,而且也考虑轧件弹性变形。把变形区分为入口弹性区、塑性区和出口弹性区。应用弹性力学基本方程、塑性条件和平板压缩理论导出了入口弹性区和出口弹性区单位宽度轧制力公式及塑性区平均单位压力公式。应用弹性接触理论和变形区的几何关系导出了计算冷轧薄板接触弧长度公式。最后给出了考虑轧辊和轧件弹性变形时计算冷轧薄板的总的轧制力公式。本文公式比目前广泛采用的Bland—Ford公式和M.D Stone公式简便,不用迭代和查表能直接计算出接触弧长度和轧制压力,因此计算精度较高。不仅适用于一般工程计算,而且也能为在线控制的电子计算机提供较为精确的轧制力数学模型。  相似文献   

4.
四辊冷轧机轧辊弯曲和压扁变形的有限元分析   总被引:8,自引:0,他引:8  
借助Marc有限元软件,采用三维弹塑性有限元法对四辊冷轧机冷轧过程进行了模拟,同时对轧辊变形进行了分析·计算模型中将辊系变形与带钢变形统一考虑,并解决了轧件与辊系之间的耦合问题,避免了采用假定或迭代方法确定轧制力分布时产生的误差·采用逐步收敛的求解过程使计算结果精确、可靠·在不同的轧制条件下,得出了带钢宽度、弯辊力等参数对辊系弯曲、工作辊接触弧上的压扁变形、板宽方向的压扁变形和有载辊缝的影响,为板形分析与控制提供了一种新的计算方法和参考数据·  相似文献   

5.
为得到多参数耦合下冷轧铝带工作辊分段冷却调节特性,建立了工作辊和轧件的一体化耦合传热模型。耦合传热建模过程包含工作辊和轧件导热微分方程的建立、轧件变形热和摩擦热的求解、换热边界条件的确立、工作辊热辊形的计算及采用二维交替差分对微分方程进行求解。仿真结果表明,同一轧制参数下工作辊分段冷却正负方向调节能力近似相等,但单向调节幅度受轧制参数影响较大,轧制长度、喷射梁工作压力和摩擦系数的增加对分段冷却调控能力具有促进作用,轧制速度的作用则相反。  相似文献   

6.
本文简述了在φ90/φ200×200四辊冷轧机上进行的实验研究,测定了异步轧制时前滑、压力和力矩等参数,提出了异步轧制时搓轧区的实验确定方法。判明了张力、变形量等因素对异步轧制压力和力矩的影响,并与普通轧制作了对比,可为选择合适的异步轧制工艺和设备提供依据。实际应用表明,异步轧制可以取得降低轧制压力,增加延伸等生产效果,冷轧带钢的异步轧制是有发展前景的。  相似文献   

7.
采用四种辊径比,两种带钢原料,三种张力制度,两种润滑条件和各种压下率对异径单辊传动轧制的力能参数进行了实验研究,在实验中采用了一种新的张力传感器的标定方法,文中用上界法推导了一个求纯轧制力矩的理论公式,给出了一个用计算机求解的,考虑了从动工作辊和其支持辊的所有附加力矩的轧制压力计算方法,这些理论计算结果和作者的实验结果符合较好,针对冷轧带钢的常见范围,还推导了一个精度和计算机解十分接近的轧制压力简化公式。因此,可在不用计算机的条件下,不需迭代,便可完成轧制压力,轧制力矩的计算。  相似文献   

8.
本文就冷轧板带轧制过程辊径差因素对轧制参数,包括轧辊与轧件运动关系、力学条件、力矩分配和产品质量的影响,进行了实验测定和理论分析,并讨论了一些与冷轧生产有关的问题。  相似文献   

9.
本文报导了在一般传动支撑辊的四辊轧机上,改变支撑辊直径实现异步轧制;在此轧机上进行异步轧制低碳带钢可降低轧制压力,减少轧制道次或退火次数,从而提高冷轧带钢生产率。降低其生产成本。  相似文献   

10.
为研究非稳态轧制状态下弯辊力对板形的影响,在理论分析和实际应用的基础上,应用力学和控制方法对在非稳态轧制状态下的弯辊力设定值进行了分析.针对在非稳态轧制状态下轧制力、摩擦力和加减速对冷轧弯辊力的影响,提出了冷轧非稳态弯辊力数学模型表达方式.研究表明,弯辊力通过轧制力对弯辊力的影响系数进行动态调整,轧制速度通过摩擦力来影响弯辊力.该模型成功应用于1450冷轧生产线且取得良好的控制效果,为现场调控非稳态弯辊力提供了有力的理论支持.  相似文献   

11.
对环形楔刀法切轧时的轧制力计算进行探讨。根据力学和运动学理论,在分析轧件运动与受力的基础上,用近似法确定了轧件与轧辊在高度方向上的相对位置及一系列与轧制力计算有关的参数,并采用分区计算的思想,计算出各区的平均单位压力和接触面积,最终计算出总轧制力。  相似文献   

12.
针对宽带钢多辊冷连轧机组特点,为提高轧制力的预报精度,在结合传统轧制压力模型的基础上把模糊算法和神经网络有机结合,设计出基于模糊小脑模型神经网络的多辊冷连轧机轧制力预报模型.通过对传统轧制力模型计算值、小脑模型预报计算值与实测值进行对比分析可知,基于模糊小脑模型神经网络的多辊冷连轧机轧制力预报模型具有较高的计算精度,更适合于多辊轧机在线计算机过程控制的应用,满足现场在线生产的要求,取得良好的板形板厚控制效果.  相似文献   

13.
在线高精度中厚板凸度计算模型   总被引:5,自引:0,他引:5  
基于普通中厚板四辊轧机,利用影响函数法分析了轧件宽度、轧制力、工作辊和支撑辊尺寸和弯辊力对有载轧辊凸度的影响,并根据大量计算数据进行回归,得出在线有载轧辊凸度计算模型·分析了轧件入口凸度对出口凸度的遗传效果,综合有载轧辊凸度模型和板凸度遗传系数模型得到在线板凸度计算模型·该模型合理地考虑了轧辊变形和轧件横向流动的影响,能够真实反映出口板凸度的大小,计算精度高,是在线板形和板凸度控制的有效工具·  相似文献   

14.
本文对万能孔型中轧制H型钢时的轧制力和力矩进行了模拟实验研究和理论分析,模拟实验以在可逆式H型钢连轧机组上轧制H200×200为研究对象,得到了无张力、前张力、后张力三种轧制条件下的轧件腰部及边部平均单位压力和水平辊轧制力矩;理论分析采用刚塑性有限元法,在总泛函中考虑了张力功率和速度不连续面上的剪切功率,理论计算得到的H型件的轧制力和力矩均与实验结果符合良好。  相似文献   

15.
非对称轧制(包括轧件跑偏、轧制力偏差等)是四辊板带轧机轴向力产生的主要原因之一。文章在弹性基础梁法的基础上,提出了研究辊系特性的变刚度弹基梁三维有限元计算模型。利用这种模型可对辊系垂向(即轧制力方向)和轧辊轴向、对称轧制(正常轧制)和非对称轧制、轧辊轴线平行及交叉诸工况进行分析。  相似文献   

16.
非对称轧制(包括轧件跑偏、轧制力偏差等)是四辊板带轧机轴向力产生的主要原因之一.文章在弹性基础梁法的基础上,提出了研究辊系特性的变刚度弹基梁三维有限元计算模型,利用这种模型可对辊系垂向(即轧制力方向)和轧辊轴向、对称轧制(正常轧制)和非对称轧制、轧辊轴线平行及交叉诸工况进行分析.  相似文献   

17.
本文从轧辊和轧件的弹性变形出发,提出一个简便而精确的接触弧长度计公算式。在此基础上又提出了简便而又较为精确的轧制压力计算方法——图表法和解析法(简化公式)。并又提出一个考虑轧辊辊身端部弹性接触压力的铝箔轧制压力计算公式。上述公式不仅为一般工程计算提供了方便的条件和较为符合实际的结果,并为电子计算机控制提供简便而又较为精确的轧制压力数学模型,对提高轧制力予报精度,减少计算机的内存占用量、提高在线的运算速度,都有着重要的实际意义。  相似文献   

18.
针对国内某热连轧厂精轧机组某机架轧机两侧刚度不对称的实际情况,为了研究四辊轧机驱动侧和操作侧刚度不对称条件下轧辊弹性变形的规律,采用影响函数法开发了基于双悬臂梁模型的轧辊弹性变形模拟计算模块,对刚度不对称时的四辊轧机进行了受力分析,对轧辊和轧件进行了离散化,给出了关键的影响函数.使用该计算模块并结合现场实际数据计算了不同刚度差条件下工作辊的弹性挠曲、工作辊与轧件之间的压扁、工作辊与支撑辊之间的弹性压扁、轧制力的横向分布和辊间压力的横向分布规律,研究了不同刚度差条件下轧件出口断面形状的变化规律.  相似文献   

19.
立轧非稳态过程的3维刚塑性有限元分析   总被引:10,自引:1,他引:9  
采用全3维刚塑性有限元法对热带粗轧机组平辊立轧非稳态过程进行了分析和比较,所得到的轧件形状、轧制力及轧制力矩与文献的实验结果吻合较好,计算精度比文献的理论结果有所提高·表明全3维模型具有明显的优越性,同时所采用的处理轧件入口处奇异点的方法是有效的·  相似文献   

20.
四辊轧机轧辊弹性变形的研究   总被引:2,自引:1,他引:1  
介绍了轧辊弹性变形影响函数解析方法的基本理论与公式.采用Fortran语言编写了轧辊弹性变形解析软件.采用编写的解析软件对某1 700 mm热带轧机精轧机组进行模拟计算,计算结果表明:增大弯辊力将降低出口带钢凸度;弯辊力的变化对辊间压力分布、工作辊挠度及辊间压扁的影响较大,而对支撑辊挠度及工作辊与轧件间的压扁影响不大;辊间压力在支撑辊端部位置存在峰值.以上模拟计算结论均符合轧制理论及现场实际.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号