共查询到18条相似文献,搜索用时 109 毫秒
1.
基于支持向量机的机场检测算法 总被引:2,自引:0,他引:2
提出了一种新的机场检测算法.该算法通过把机场跑道的几何特征与其所在区域的纹理特征相结合来描述机场特征,其中由灰度的平均值和方差、区域的光滑性、直方图的偏斜度、区域的一致性、图像的随机性、图像的梯度平均和方差等8个特征组成机场的纹理特征向量.先通过直线检测找到机场跑道的候选区域,然后用基于高斯核函数的支持向量机作为分类函数,对候选区域的特征向量进行分类,由此判别机场跑道.实验表明,与传统的仪通过形状判断机场的方法比较,该算法对机场的误检率较低,检测率比刘德红的方法高近10倍,几乎能实时完成一幅图像的检测. 相似文献
2.
基于层次型支持向量机的人脸检测 总被引:25,自引:0,他引:25
复杂背景中的人脸检测可广泛应用于人脸识别、人机交互等方面。但目前大部分人脸检测方法中存在分类器训练困难和检测计算量大等问题。提出了一种基于层次型支持向量机的正面直立人脸检测方法,在这两方面作了改进。这种结构的分类器由一个线性支持向量机组合和一个非线性支持向量机组成,由前者在保证检测率的情况下快速排除掉图像中绝大部分非人脸区域,后者对人脸候选区域进行进一步确认。在卡内基梅隆CMU等数据库上的实验证明了这种方法不仅具有较高的检测率和较低的误检率,而且具有较小的计算量。 相似文献
3.
针对现有回归型加权支持向量机直接选择加权系数法存在的不足,提出了一种对加权系数进行寻优的新方法——动态自适应加权算法.通过对权系数进行的自适应迭代调整,以确定其最优值,并进行了实验仿真.仿真结果表明:采用该方法确定的最优加权系数,可以对预测样本数据进行更准确的回归估计. 相似文献
4.
一种新的支持向量机增量学习算法 总被引:22,自引:0,他引:22
提出一种新的支持向量机增量学习算法。分析了新样本加入训练集后,支持向量集的变化情况。基于分析结论提出新的学习算法。算法舍弃对最终结论无用的样本,使得学习对象的知识到了积累。实验结果表明本算法在保证分类准确度的同时,在增量学习问题上比传统的支持向量机有效。 相似文献
5.
为解决车辆阴影检测中易将车辆阴影相似的车辆区域误检测为车辆阴影的问题,提出了一种基于超像素和支持向量机的车辆阴影检测算法.首先,利用简单线性迭代聚类法将图像分割为若干超像素;然后,以超像素为基本检测单位,根据HSV空间中的一组判别条件对车辆阴影进行初步检测;在此基础上,利用支持向量机识别并去除被误检测为车辆阴影的车辆区域,进而得到最终的车辆阴影.实验结果表明,所提算法能够较好地区分车辆阴影及与车辆阴影相似的车辆区域,提高车辆阴影的检测率和分类率. 相似文献
6.
基于支持向量机的彩色图像人脸检测方法 总被引:4,自引:0,他引:4
提出了一种利用肤色信息、基于样本学习的彩色图像人脸检测方法。该方法利用两层支持向量机进行人脸检测,用肤色和非肤色样本训练的第一层支持向量机对图像中每个像素进行分类,所有被判断为皮肤点的像素构成了肤色区域;用窗口对肤色区域进行遍历,用人脸和非人脸样本训练的第二层支持向量机判断窗口是否包含人脸模式,并对检测到的人脸区域进行必要的合并。实验结果显示,本文方法对彩色图像中正面人脸的检测率为87.6%。 相似文献
7.
针对基于内容的信息检索中负样本抽样效率低的问题,设计了1.5类支持向量分类器.在训练过程中利用正样本对分类线建立初始模型,在保证总体泛化能力的基础上,用所能获得的负样本修正分类线,以提高其检测精度;通过对比标准序列最小优化方法,得到快速训练算法.在美国邮政数据库(USPS数据库)与麻省理工大学人脸数据库(CBCL数据库)上的实验结果表明,与传统的支持向量分类器相比,这种方法能取得更高的检测精度. 相似文献
8.
任广永 《河南科技大学学报(自然科学版)》2008,29(4)
支持向量机学习算法的本质是从训练集中寻找支持向量,因此能否通过训练算法能快速找出支持向量是衡量支持向量机算法优劣的重要标准.本文提出了一种新的快速训练支持向量机的增量学习算法,首先,给出边界向量的定义,然后,对一个给定的新加人的样本,新的学习方法验证其是否为边界向量,如果是,将其加入到训练集中重新训练支持向量机,如果不是,就舍弃,这样能达到减少训练样本、降低训练复杂性目的,最后,给出了一个增量学习算法.实验表明测试误差和支持向量数量与SMO算法大致相当,而训练速度明显加快. 相似文献
9.
由支持向量机算法得到的支持向量集合通常不是分类所必需的最小集合,冗余支持向量的存在降低了支持向量机的分类速度和实用化能力.为此,提出一种精简支持向量集合的新方法,给出了从原支持向量集合中识别和剔除冗余向量、生成新支持向量集合并确定其元素权值的算法.新方法尤其适用于样本规模大、支持向量数目多的分类问题.实验表明它能够在基本不降低支持向量机分类精度的前提下,大幅度地减少支持向量的数目,提高支持向量机的分类速度. 相似文献
10.
在对网络数据分析和研究的基础上,提出了一种基于免疫算法和支持向量机的入侵检测方法。利用免疫算法对网络数据进行预处理,运用支持向量机对处理后的数据进行分类。实验表明,该方法是可行的、有效的。 相似文献
11.
12.
为了快捷和高精度地评价水质,针对支持向量机的训练数据量局限于小样本集以及对噪音数据的敏感性问题,提出了一种基于粗糙集与Morlet小波核支持向量机的水质评价方法.利用本算法和matlab平台在长江芜湖段15项参评指标检测数据的108个样本基础上,进行水质评价建模和分类.实验表明,利用小波核不仅提高了分类的准确性,而且提高了整体分类效率. 相似文献
13.
为了快速的求解支持向量机问题,降低求解规模,根据支持向量机的几何原理以及数据样本的统计特性,提出了一种改进的支持向量机快速算法。该算法通过迭代修正支持超平面的法向量,采用数值逼近而非解二次规划的方式来求解问题。算法具有速度快、增量学习、使用的支持向量少等显著优点。 相似文献
14.
工业用水量预测对工业企业的规划、运行具有非常重要的作用。采用河南省周口市某食品加工企业近10年来工业用水量时间序列记录资料作为训练样本,提出了在支持向量机回归预测中采用粒子群算法优化参数的方法。通过算例分析表明,此算法能够显著提高预测的精度。 相似文献
15.
16.
17.
为实现空间监视系统光学图像中目标高精度探测,提出了一种星空背景下高精度快速级联式支持向量机空间目标检测算法。通过提取空间目标不同尺度下目标二值规范化特征,训练前两级线性级联支持向量机分类器;继而提取目标的面积、周长、灰度、Hu矩特征作为组合特征,训练第三级支持向量机分类器。在目标检测过程中,采用前两级支持向量机分类器进行候选目标的窗口预测和评分,进而利用第三级支持向量机分类器进行目标确认而给出检测结果。仿真实验及结果分析表明,这种级联支持向量级目标检测方法的精度高、实时性强、适用于星空背景下的空间监视系统。 相似文献
18.
齿轮箱故障振动信号具有非线性、非平稳的特点,在故障早期难以实现故障特征的提取和故障类型的识别。本文提出磷虾群算法(krill herd algorithm, KHA)-变分模态分解(variational mode decomposition,VMD)-多尺度排列熵(multi-scale permutation entropy,MPE)与支持向量机(support vector machine,SVM)相结合的齿轮箱故障类型识别算法。首先对采集到的齿轮箱振动信号利用KHA优化的VMD进行分解,选取有效分量进行重构,然后求取其MPE作为特征向量,最后将特征向量输入SVM进行故障类型的识别。通过实测数据的分析表明,故障类型识别准确率达到了99.14%,该方法在机车车辆、发电机组等装备的齿轮箱状态监测和故障诊断中具有一定的参考价值。 相似文献