首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WRKY proteins are involved in various physiological processes, including biotic and abiotic stress responses, hormone responses and development. However, no systematic identification, expression and function analysis of WRKY genes in wheat were reported. In this study, we isolated 15 wheat cDNAs with complete open reading frame (ORF) encoding putative WRKY proteins using in silico cloning. Phylogenetic analysis indicated that the 15 wheat WRKY genes belonged to three major WRKY groups. Expression analysis revealed that most genes expressed drastically in leaf, except Ta WRKYIO which expressed in crown intensively. Four genes were strongly up-regulated with the senescence of leaves. Eight genes were responsive to low temperature, high temperature, NaCl or PEG treatment. Moreover, differential expression patterns were also observed between wheat hybrid and its parents, and some genes were more responsive to PEG treatment in the hybrid. These results demonstrated that wheat WRKY genes are involved in leaf senescing and abiotic stresses. And the changed expression of these WRKY genes in hybrid might contribute to the heterosis by improving the stress tolerance in hybrids.  相似文献   

2.
3.
Brassica chinensis L. was chosen and exposed to different concentrations of Cd exposure to evaluate its Cd-accumulating capacity and its potential cellular defensive mechanisms. Cd accumulation in the shoots and roots of B. chinensis was up to 1348.3±461.8 and 3761.0±795.0 mg per killogram of dry weight, respectively, under 200 μmol/L of Cd exposure. Increasing Cd accumulation in the plant was accompanied by rapid accumulation of phytochelatins (PCs), and the sequestration of Cd by PCs provided a primary cellular mechanism for Cd detoxification and tolerance of B. chinensis. Furthermore, malondialdehyde formation, hydrogen peroxide content and antioxidative enzyme activities such as superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase were observed in the shoots of Cd-stressed B. chinensis. Increasing enzyme activities in response to concentrations of 5 to 50 μmol/L Cd showed an efficient defense against oxidative stress, suggesting that the antioxidative system was a secondary defensive mechanism. These resulted in reduced free Cd damage and enhanced Cd accumulation and tolerance. Glutathione plays a pivotal role in these two detoxification pathways. In general, these results suggested that PCs and the antioxidative system are synergistic in combatting Cd-induced oxidative stress and that they play important roles in Cd detoxification of B. chinensis, and also give a deep understanding of the natural defensive mechanisms in plants under heavy metal stress.  相似文献   

4.
5.
Soybean (Glycine max L.) is a very important food and oil crop in China. Legume-rhizobium symbiotic nitrogen (N) fixation is an important biological character and also the base of improving soil fertility of soybean. However, soybean production and development is severely limited in tropical and subtropical areas in China due to a lack of effective rhizobial inoculants adapting to low-phosphorus (P) acid soils. In the present study, 12 soybean rhizobial strains were isolated and purified from the nodules of two soybean genotypes contrasting in P efficiency, which were grown on different low-P acid soils with different soybean cultivation histories. Results from 16S rDNA sequence analysis showed that these 12 rhizobial strains belonged to the genus of Bradyrhizobium, which had higher nitrogenase activities compared to the control strain, Bradyrhizboium japonicum USDA110. A field experiment was carried out by applying rhizobial inoculants, a mixture of three rhizobial strains that showed the highest nitrogenase activity, on a typical low-P acid soil in South China. The results showed that, without inoculation, no nodules were formed in the three soybean genotypes tested; with inoculation, the nodulation rates in all were 100%. Inoculation with rhizobial inoculants not only made many nodules formed, but also increased soybean shoot biomass and yield, and improved nitrogen (N) and P nutrient status. Among which, shoot dry weight, N and P content of a soybean genotype, Huachun 3, inoculated with rhizobium were increased 154.3%, 152.4% and 163.2% compared to that without inoculation, respectively. We concluded that: (i) The effective indigenous rhizobial strains isolated in this study from soybeans on low-P acid soils in South China have the characters of broad host range, high nodulation efficiency, efficient N fixation, great low pH and low P tolerance. (ii) Soil environment and host types are the key factors to screen the effective rhizobial strains. Considering soil pH values and P efficiency of the host genotypes might increase the screening efficiency. (iii) Improving N status and facilitating root growth might be the mechanisms of increasing the P uptake in soybean plants inoculated with the effective rhizobial strains on low-P acid soils. (iv) Inoculation with the effective rhizobial inoculants could significantly improve growth, N and P content of soybean on low-P acid soils, which might be an effective approach to enhance soybean cultivation and development in these areas. Therefore, application and extension of inoculation techniques with effective rhizobial inoculants in legumes would result in great economical, environmental and ecological benefits. The authors contributed equally to this work Supported by National Key Basic Research and Development of China (Grant No. 2005CB120902), McKnight Foundation Collaborative Crop Research Program (USA) (Grant No. 05-780) and National Natural Science Foundation of China (Grant No. 30571111)  相似文献   

6.
Na~ /H~ antiporters (NHX) are ubiquitous transmembrane proteins that play a key role in salt tolerance of plants. In this study, the sequence of 3 Arabidopsis NHX gene (AtNHX2―4) were compared with other AtNHX members. Putative cis-elements analysis identified elements that have been associated with stress responses. The activities of the promoters AtNHX2―4 were studied in transgenic plants carrying corresponding promoter-β-glucuronidase (GUS) fusions. The AtNHX2 promoter-GUS analysis indicated that AtNHX2 was expressed in constitutive pattern with high GUS activity in roots and leaves. AtNHX2 promoter activity was not up-regulated by NaCl or abscisic acid (ABA), in contrast to the AtNHX1 promoter which was previously studied. The AtNHX3 and AtNHX4 promoters showed tissue-specific activities. Strong GUS activity was detected in roots and vascular bundles of the stele in plants carry-ing an AtNHX4 promoter-GUS fusion, and GUS activity increased under salt stress suggesting a func-tion related to salt tolerance. Transgenic plants carrying the AtNHX3 promoter-GUS fusion showed strong GUS activity in petals, stamens and tops of siliques, suggesting a possible role of AtNHX3 in flower and seed development. Results of histochemical analysis suggested that AtNHX2―4 are involved in divergent functions and are differentially regulated under abiotic stress. The structure of AtNHX4 was predicted to include 12 transmembrane regions and a NHX domain. Overexpression of AtNHX4 in Arabidopsis transgenic lines confers greater salt tolerance than in wild type plants. These results suggest that AtNHX4 may encode a putative vacuolar NHX that plays an important role in salt tolerance.  相似文献   

7.
The cry1Ah gene was one of novel insecticidal genes cloned from Bacillus thuringiensis isolate BT8. Two plant expression vectors containing cry1Ah gene were constructed. The first intron of maize ubiqutinl gene was inserted between the maize Ubiquitin promoter and cry1Ah gene in one of the plant expressing vectors (pUUOAH). The two vectors were introduced into maize immature embryonic calli by microprojectile bombardment, and the reproductively plants were acquired. PCR and Southern blot analysis showed that foreign genes had been integrated into maize genome and inherited to the next generation stably. The ELISA assay to T1 and T2 generation plants showed that the expression of CrylAh protein in the construct containing the ubil intron (pUUOAH) was 20% higher than that of the intronless construct (pUOAH). Bioassay results showed that the transgenic maize harboring cry1Ah gene had high resistance to the Asian corn borers and the insecticidal activity of the transgenic maize containing the ubil intron was higher than that of the intronless construct. These results indicated that the maize ubil intron can enhance the expression of the Bt cry1Ah gene in transgenic maize efficiently  相似文献   

8.
9.
Using commercial amorphous B powder (92% in purity) and Mg powder (99% in purity) as starting materials, 19-filament Fe/Cu clad MgB2 wires were fabricated by an in situ powder-in-tube method. Heat treatment was performed at 700℃ for 1 h under an argon gas atmosphere. The influence of Mg/B ratio on the microstructure and superconducting properties of the wires was investigated. It was found that the major phases of MgB2 wires were MgB2 accompanied with relatively small amounts of MgO and Fe2B impurities. With 5% excess Mg addition, the onset TC slightly decreased. However, the transport JC at 4.2 K and 4 T reached 1.07×104 A·cm-2, increasing by a factor of 1.4 compared to the stoichiometric sample. Moreover, the Mg1.05B2 sample showed an improved field dependence of JC, suggesting that less voids and smaller grain size of the Mg1.05B2 core lead to better grain connectivity and stronger flux pinning.  相似文献   

10.
WRKY proteins are involved in various physiological processes, including biotic and abiotic stress responses, hormone responses and development. However, no systematic identification, expression and function analysis of WRKY genes in wheat were reported. In this study, we isolated 15 wheat cDNAs with complete open reading frame (ORF) encoding putative WRKY proteins using in silico cloning. Phylogenetic analysis indicated that the 15 wheat WRKY genes belonged to three major WRKY groups. Expression analysis revealed that most genes expressed drastically in leaf, except TaWRKY10 which expressed in crown intensively. Four genes were strongly up-regulated with the senescence of leaves. Eight genes were responsive to low temperature, high temperature, NaCl or PEG treatment. Moreover, differential expression patterns were also observed between wheat hybrid and its parents, and some genes were more responsive to PEG treatment in the hybrid. These results demonstrated that wheat WRKY genes are involved in leaf senescing and abiotic stresses. And the changed expression of these WRKY genes in hybrid might contribute to the heterosis by improving the stress tolerance in hybrids.  相似文献   

11.
Three strong earthquakes with magnitudes of Mw 8.4, Mw 7.9 and Mw 7.0 occurred in the sea west of Sumatra Island on September 12 and 13, 2007. We relocated the epicenters and focal depths of the three events by means of the reversal-time imaging technique using broadband digital seismic data from worldwide stations ranging from 30° to 90°, imaged the spatiotemporal variation of the energy radiation sources by means of the nonplane wave array technique using the broadband digital seismic data from a generalized array made up of 33 stations of the Capital Region Digital Seismograph Network (CRDSN), and obtained the rupture duration times, extents and rupture velocities. Also, we discussed the correlations between the locations of the energy radiation sources of the three events.  相似文献   

12.
The functional analysis of dr1127,a novel gene in Deinococcus radiodurans was performed in this pa-per. The dr1127 gene was found occasionally in our microarray and 2-DE gel experiments. Mutation of the dr1127 gene decreased the γ-radiation and H2O2 resistance of D. radiodurans,and weakened the scavenging abilities of cell extracts for free radicals (superoxide anion,hydrogen peroxide,and hy-droxyl radical). Further oxidative damage assays demonstrated that the purified DR1127 protein of D. radiodurans could bind to double stranded DNA in vitro and protect DNA from oxidative damage in this way. These results suggest that the dr1127 gene is an important gene that can maintain γ-radiation and oxidative resistance in D. radiodurans and may take part in the oxidative stress process.  相似文献   

13.
Salinity is one of the most severe environmental factors that may impair crop productivity. A proteomic study based on two-dimensional gel electrophoresis is performed in order to analyze the long-term salinity stress response of Thellungiella halophila, an Arabidopsis-related halophyte. Four-week-old seedlings are exposed to long-term salinity treatment. The total crude proteins are extracted from leaf blades, separated by 2-DE, stained with Coomassie Brilliant Blue, and differentially displayed spots are identified by MALDI-TOF MS or QTOF MS/MS. Among 900 protein spots reproducibly detected on each gel, 30 spots exhibit significant change and some of them are identified. The identified proteins include not only some previously characterized stress-responsive proteins such as TIR-NBS-LRR class disease resistance protein, ferritin-1, and pathogenesis-related protein 5, but also some proteins related to energy pathway, metabolism, RNA processing and protein degradation, as well as proteins with unknown functions. The possible functions of these proteins in salinity tolerance of T. halophila are discussed and it is suggested that the long-term salinity tolerance of T. halophila is achieved, at least partly, by enhancing defense system, adjusting energy and metabolic pathway and maintaining RNA structure.  相似文献   

14.
WRKY proteins are involved in various physiological processes, including biotic and abiotic stress responses, hormone responses and development. However, no systematic identi?cation, expression and function analysis of WRKY genes in wheat were reported. In this study, we isolated 15 wheat cDNAs with complete open reading frame (ORF) encoding putative WRKY proteins using in silico cloning. Phylogenetic analysis indicated that the 15 wheat WRKY genes belonged to three major WRKY groups. Expression analysis revealed that most genes expressed drastically in leaf, except TaWRKY10 which expressed in crown intensively. Four genes were strongly up-regulated with the senescence of leaves. Eight genes were responsive to low temperature, high temperature, NaCl or PEG treatment. Moreover, differential expression patterns were also observed between wheat hybrid and its parents, and some genes were more responsive to PEG treatment in the hybrid. These results demonstrated that wheat WRKY genes are involved in leaf senescing and abiotic stresses. And the changed expression of these WRKY genes in hybrid might contribute to the heterosis by improving the stress tolerance in hybrids. 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.  相似文献   

15.
WRKY proteins are involved in various physiological processes, including biotic and abiotic stress responses, hormone responses and development. However, no systematic identi?cation, expression and function analysis of WRKY genes in wheat were reported. In this study, we isolated 15 wheat cDNAs with complete open reading frame (ORF) encoding putative WRKY proteins using in silico cloning. Phylogenetic analysis indicated that the 15 wheat WRKY genes belonged to three major WRKY groups. Expression analysis revealed that most genes expressed drastically in leaf, except TaWRKY10 which expressed in crown intensively. Four genes were strongly up-regulated with the senescence of leaves. Eight genes were responsive to low temperature, high temperature, NaCl or PEG treatment. Moreover, differential expression patterns were also observed between wheat hybrid and its parents, and some genes were more responsive to PEG treatment in the hybrid. These results demonstrated that wheat WRKY genes are involved in leaf senescing and abiotic stresses. And the changed expression of these WRKY genes in hybrid might contribute to the heterosis by improving the stress tolerance in hybrids. 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.  相似文献   

16.
植物抗胁迫类转录因子研究进展   总被引:1,自引:0,他引:1  
转录因子在植物应答生物和非生物胁迫中起着重要作用.在胁迫环境下,植物中特定的转录因子与抗逆基因上游的顺式作用元件结合,从而特异性地调控该基因在植物体内的表达,提高植物对环境胁迫的适应能力.该文概述了植物抗胁迫相关的4类转录因子:MYB类转录因子、bZIP类转录因子、WRKY类转录因子和NAC类转录因子的结构特点、调控机制以及它们在植物耐逆基因工程中的研究进展.  相似文献   

17.
18.
19.
Nano-SiC doped MgB2 tapes were prepared by the in situ powder-in-tube method. Heat treatment was performed at 650℃ for 1 h. XRD data indicate that SiC particles had reacted with the MgB2 during sintering process. MgB2 core seemed to be denser after SiC doping, and the critical temperature was slightly depressed. The critical current density Jc of the SiC doped tapes was significantly enhanced in magnetic fields up to 14 T compared to the undoped ones. For the 5% SiC doped samples, Jc was in- creased by a factor of 32 at 4.2 K, 10 T. The enhancement of Jc-B properties in SiC doped MgB2 tapes is considered to be due to the enhancement of grain linkages and the introduction of effective flux pining centers. The substitution of B by C in MgB2 grains is thought to be the main reason for the improve- ment of the flux pinning ability in SiC doped MgB2 tapes.  相似文献   

20.
To investigate the expression pattern of GhSCFP which was isolated from cotton fiber cDNA library, a 1006 bp upstream fragment of the gene was cloned by chromosome walking and fused to GUSand GFP respectively. Histochemical GUS and GFP fluorescence analysis revealed that the expression of the report genes driven by the promoter sequence was detectable only in outer layer cells during the seed development in the transgentic tobaccos. In transgenic cotton, strong GUS activity was observed in spherical protrusions on 0 dpa (days post anthesis) ovule surface, and in the 2-36 dpa fiber cells, while no GUS signals were detected in the root, leaves, stem, corolla, anther and stigma. Our data demonstrated that GhSCFP upstream sequence is a cotton fiber-specific promoter and this promoter will be useful in the molecular research on fiber cell development and in cotton fiber improvements by genetic modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号