首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The cytoplasma fraction of the bovine choroid plexus epithelial cells was found to contain a considerable ATPase activity. The influence of Na+, K+, Li+, Rb+, Cs+, Co++, Mn++, Zn++ and Fe+++ on the activity of the Mg++-dependent enzyme has been studied. The monovalent cations do not influence the enzymic activity, whereas the effect of the bi- and trivalent cations is characterized by an inhibition of the ATPase.  相似文献   

2.
Molecular mechanisms of thrombin function   总被引:9,自引:0,他引:9  
The discovery of thrombin as a Na+-dependent allosteric enzyme has revealed a novel strategy for regulating protease activity and specificity. The allosteric nature of this enzyme influences all its physiologically important interactions and rationalizes a large body of structural and functional information. For the first time, a coherent mechanistic framework is available for understanding how thrombin interacts with fibrinogen, thrombomodulin and protein C, and how Na+ binding influences the specificity sites of the enzyme. This information can be used for engineering thrombin mutants with selective specificity towards protein C and for the rational design of potent active site inhibitors. Thrombin also serves as a paradigm for allosteric proteases. Elucidation of the molecular basis of the Na+-dependent allosteric regulation of catalytic activity, based on the residue present at position 225, provides unprecedented insights into the function and evolution of serine proteases. This mechanism represents one of the simplest and most important structure-function correlations ever reported for enzymes in general. All vitamin K-dependent proteases and some complement factors are subject to the Na+-dependent regulation discovered for thrombin. Na+ is therefore a key factor in the activation of zymogens in the coagulation and complement systems.  相似文献   

3.
Summary The (Na++K+)- and Mg2+-dependent ATPase distribution in several brain areas has been investigated in Quaking mutant mice characterized by myelin deficiency. A marked decrease of (Na++K+)-ATPase activity has been found in limbic structures, hypothalamus and cerebellum. The Mg2+-dependent activity did not change. A possible involvement of the impairment of the (Na++K+)-ATPase activity in the seizure susceptibility of this mice is discussed.Chargée de Recherche au CNRS.  相似文献   

4.
Summary The accumulation of non-metabolized choline in isolated rat hepatocytes is concentrative in Na+ medium, whereas the accumulation does not exceed unity in a Li+ medium. Ouabain and 2,4-dinitrophenol inhibited the choline uptake. These results indicate that choline is taken up by rat hepatocytes via a Na+-and energy-dependent process, and choline oxidase is not directly connected with the choline transport system.  相似文献   

5.
Increasing evidence demonstrates that Na+, K+-ATPase plays an important role in pulmonary inflammation, but the mechanism remains largely unknown. In this study, we used cardiotonic steroids as Na+, K+-ATPase inhibitors to explore the possible involvement of Na+, K+-ATPase in pulmonary epithelial inflammation. The results demonstrated that mice after ouabain inhalation developed cyclooxygenase-2-dependent acute lung inflammation. The in vitro experiments further confirmed that Na+, K+-ATPase inhibitors significantly stimulated cyclooxygenase-2 expression in lung epithelial cells of human or murine origin, the process of which was participated by multiple cis-elements and trans-acting factors. Most importantly, we first described here that Na+, K+-ATPase inhibitors could evoke a significant Hu antigen R nuclear export in lung epithelial cells, which stabilized cyclooxygenase-2 mRNA by binding with a proximal AU-rich element within its 3′-untranslated region. In conclusion, HuR-mediated mRNA stabilization opens new avenues in understanding the importance of Na+, K+-ATPase, as well as its inhibitors in inflammation.  相似文献   

6.
Selective pharmacological Na+/H+ exchange (NHE) inhibitors were used to identify functional NHE isoforms in human small intestinal enterocytes (Caco-2) and to distinguish between direct and indirect effects on transport via the intestinal di/tripeptide transporter hPepT1. The relative potencies of these inhibitors to inhibit 22Na+ influx identifies NHE3 and NHE1 as the apical and basolateral NHE isoforms. The Na+-dependent (NHE3-sensitive) component of apical dipeptide ([14C] Gly-Sar) uptake was inhibited by the selective NHE inhibitors with the same order of potency observed for inhibition of apical 22Na+ uptake. However, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) also reduced [14C]Gly-Sar uptake in the absence of Na+ and this inhibition was concentration and pH (maximal at pH 5.5) dependent. NHE3 inhibition by S1611 and S3226 modulates dipeptide uptake indirectly by reducing the transapical driving force (H+ electrochemical gradient). EIPA (at 100 μM) has similar effects, but at higher concentrations (>200 μM) also has direct inhibitory effects on hPepT1.Received 28 February 2005; received after revision 20 April 2005; accepted 20 May 2005  相似文献   

7.
Summary The addition of 1 · 10–4 ouabain (strophantin-G), a Na+-K+-dependent ATP-ase inhibitor, to the cultivating medium of chick embryo spinal ganglia in vitro cultures caused the vacuolization of the cytoplasm of the fibroblast-like cells, but not of the nervous ones, after 6 h of culture, with a maximum after 24 h.  相似文献   

8.
Activation of δ-opioid receptors (DOR) attenuates anoxic K+ leakage and protects cortical neurons from anoxic insults by inhibiting Na+ influx. It is unknown, however, which pathway(s) that mediates the Na+ influx is the target of DOR signal. In the present work, we found that, in the cortex, (1) DOR protection was largely dependent on the inhibition of anoxic Na+ influxes mediated by voltage-gated Na+ channels; (2) DOR activation inhibited Na+ influx mediated by ionotropic glutamate N-methyl-D-aspartate (NMDA) receptors, but not that by non-NMDA receptors, although both played a role in anoxic K+ derangement; and (3) DOR activation had little effect on Na+/Ca2+ exchanger-based response to anoxia. We conclude that DOR activation attenuates anoxic K+ derangement by restricting Na+ influx mediated by Na+ channels and NMDA receptors, and that non-NMDA receptors and Na+/Ca2+ exchangers, although involved in anoxic K+ derangement in certain degrees, are less likely the targets of DOR signal. Received 26 November 2008; received after revision 26 December 2008; accepted 13 January 2009  相似文献   

9.
We studied the Na+/K+ pump, Na+/K+ ATPase activity, and oxygen consumption (QO2) in hepatocytes isolated from the periportal (PH) and pericentral (CH) regions of the liver lobule, to provide an insight into the functional properties of these cells. Na+/K+ pump activity was determined using86Rb+ (a functional analog of K+) and ouabain, a specific inhibitor of this transport system. Our results indicate the the Na+/K+, pump and Na+/K+ ATPase activity are significantly lower in CH than in PH, although basal ouabain-sensitive (OS) QO2 was negligible in both of these cell preparations. However, OSQO2 was significantly lower in CH than in PH when the Na+/K+ pump was activated using the ionophore nystatin in a Na+-containing medium. These results indicate that the differences in membrane ion transport exist between hepatocytes from different locations of the liver lobule.  相似文献   

10.
The lack of Na+,K+-ATPase expression in intercalated cells (IC) is an intriguing condition due to its fundamental role in cellular homeostasis. In order to better understand this question we compared the activities of Na+,K+-ATPase and Na+-ATPase in two MDCK cell clones: the C11, with IC characteristics, and the C7, with principal cells (PC) characteristics. The Na+,K+-ATPase activity found in C11 cells is far lower than in C7 cells and the expression of its β-subunit is similar in both cells. On the other hand, a subset of C11 without α-subunit expression has been found. In C11 cells the Na+-ATPase activity is higher than that of the Na+,K+-ATPase, and it is increased by medium alkalinization, suggesting that it could account for the cellular Na+-homeostasis. Although further studies are necessary for a better understanding of these findings, the presence of Na+-ATPase may explain the adequate survival of cells that lack Na+,K+-ATPase. Received 09 July 2008; received after revision 03 August 2008; accepted 12 August 2008  相似文献   

11.
To investigate the peculiar ionic specificity of KAAT1, an Na+- and K+-coupled amino acid cotransporter from Lepidoptera, a detailed analysis of membrane topology predictions was performed, together with sequence comparison with strictly Na+-dependent mammalian cotransporters from the same family. The analysis identified aspartate 338, a residue present also in the other cotransporter accepting K+ (CAATCH1), but absent in most mammalian transporters that have, instead, an asparagine in the corresponding position. Mutation of D338 in KAAT1 led either to non-functional transporters (D338G, D338C), or to an altered ionic selectivity (D338E, D338N), observable in uptake experiments and in electrophysiological properties. In particular, in D338E, the transport activity, while persisting in the presence of Na+, appeared to be completely abolished in the presence of K+. D338E also showed uncoupling between transport-associated current and uptake. The opposite mutation in the -aminobutyric acid transporter rGAT-1 (N327D) resulted in complete loss of function. In conclusion, aspartate 338 in KAAT1 appears to be important in allowing K+, in addition to Na+, to drive the transport mechanism, although other residues in different parts of the protein may also play a role in the complete determination of ionic selectivity.Received 23 September 2003; received after revision 11 November 2003; accepted 25 November 2003  相似文献   

12.
Summary Na+, K+-ATPase inhibitors extracted from plasma of healthy human subjects displaced3H-ouabain binding to human erythrocytes and inhibited the Na+ efflux catalyzed by the Na+, K+-pump and unexpectedly the Na+, K+-cotransport system without alteration of the Na+, Na+-exchange or the Na+ passive permeability. This suggests the presence in healthy human plasma of endogenous factors with ouabain-like and furosemide-like activities.Acknowledgments. We are indebted to Dr M. A. Devynck for her advice on chemical measurements and to Dr R. P. Garay for his help with flux measurements  相似文献   

13.
The heart beat of early juveniles of the littoral isopodLigia exotica occurred at a frequency of 250 to 350/min, associated with rhythmic activity of the heart muscle. Each burst was composed of a slow depolarizing potential with superimposed spike potentials. The spike potential was eliminated by perfusion with TTX-containing or Na+-free saline. In TTX-saline, the slow potential was unchanged in frequency and amplitude. By current injection into the heart muscle, the rhythm of the slow potential was phase-shifted and its frequency was changed in a membrane potential-dependent manner. These results show that the heart ofLigia early juveniles acts as an endogenous muscle oscillator generating oscillatory slow potentials and Na+-dependent spikes.  相似文献   

14.
Résumé La libération de l'acide -aminobutyrique à la surface du cortex cerebral est augmentée par remplacement du Na+ par le Li+.

Thanks are due to Prof.J. F. Mitchell who directed some of these studies while the author was a Wellcome Research Fellow in the University of Cambridge.  相似文献   

15.
The Na+,K+-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na+ ions out of the cell and of K+ ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na+,K+-ATPase, recent work has suggested additional roles for Na+,K+-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na+,K+-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na+,K+-ATPase as a signal transducer, but also briefly discuss other Na+,K+-ATPase protein–protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme.  相似文献   

16.
In the present study, we have examined the intestinal Na+ transport, through the Na+-H+ exchanger, in ileal brush-border membrane vesicles (BBMV) isolated from spontaneously hypertensive rats (SHR), and normotensive Wistar Kyoto (WKY) rats as a control group. Na+ uptake into ileal BBMV was stimulated in the presence of a proton gradient (pH 5.5 inside/pH 7.5 outside) in SHR and WKY rats, resulting in a transient accumulation (overshoot) in both groups of rats. No overshoot was observed in the absence of a pH gradient. The magnitude of the accumulation was significantly higher in SHR than in WKY rats. Uptake of Na+ at equilibrium was identical in the presence and the absence of a proton gradient and was not changed in SHR. The use of amiloride inhibited pH gradient-driven Na+ uptake in a dose-dependent manner with a Ki of 90 μM and 100 μM for SHR and WKY rats, respectively. The relationship between proton gradient-driven Na+ uptake and external Na+ concentration was saturable and conformed to Michaelis-Menten kinetics in both SHR and WKY rats. Lineweaver-Burk analysis of the pH gradient-driven Na+ uptake indicated values of Vmax that were significantly increased in SHR compared to WKY rats (11.4±0.55 nmol/mg/8 s vs. 4.96±0.78 nmol/mg/8 s for SHR and WKY rats, respectively). In contrast, similar Km values for Na+ were found between SHR and WKY rats (4.0±0.2 mM vs. 4.9±0.6 mM for SHR and WKY rats, respectively). These studies show derangement in ileal BBMV Na+ transport of SHR, which is characterized by increased Na+-H+ exchanger activity. Received 18 December 1996; received after revision 3 February 1997; accepted 7 February 1997  相似文献   

17.
Summary Exogenous cyclic AMP (cAMP) inhibits the Na+, K+-cotransport system and stimulates the Na+, K+-pump and Na+, Ca2+ exchange in mouse macrophages. These effects are enhanced by inhibition of phosphodiesterase with methylisobutylxanthine (MIX). MIX alone showed little or no effect. A similar response was observed after stimulation of endogenous production of cAMP by isoproterenol.  相似文献   

18.
Summary The effect of adrenaline on the Na+-pump in bullfrog (Rana catesbeiana) sympathetic ganglion cells was studied by use of electrophysiological methods. The rate of removal of excess Na+ injected into a ganglion cell was increased by adrenaline. The K+-activated hyperpolarization of cell membrane, which might be produced by an electrogenic Na+-pump, was also increased by adrenaline. These results suggested that adrenaline was able to accelerate the Na+-pump, possibly the electrogenic Na+-pump.  相似文献   

19.
Summary In the isolated urinary bladder of the toad, 10–5–10–4M orthovanadate produces inhibition of the active transport of Na+ and H+ ions as well as of antidiuretic hormone-mediated osmotic flow of water. Since transport of H+ ions and osmotic water flow are not inhibited when (Na++K+)-ATPase is inhibited by ouabain, biological actions of vanadate are not necessarily related to inhibition of (Na++K+)-ATPase.This research was supported by grant AM-14915 from the National Institutes of Helath.  相似文献   

20.
Hypoxic/ischemic disruption of ionic homeostasis is a critical trigger of neuronal injury/death in the brain. There is, however, no promising strategy against such pathophysiologic change to protect the brain from hypoxic/ischemic injury. Here, we present a novel finding that activation of δ-opioid receptors (DOR) reduced anoxic Na+ influx in the mouse cortex, which was completely blocked by DOR antagonism with naltrindole. Furthermore, we co-expressed DOR and Na+ channels in Xenopus oocytes and showed that DOR expression and activation indeed play an inhibitory role in Na+ channel regulation by decreasing the amplitude of sodium currents and increasing activation threshold of Na+ channels. Our results suggest that DOR protects from anoxic disruption of Na+ homeostasis via Na+ channel regulation. These data may potentially have significant impacts on understanding the intrinsic mechanism of neuronal responses to stress and provide clues for better solutions of hypoxic/ischemic encephalopathy, and for the exploration of acupuncture mechanism since acupuncture activates opioid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号