首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The most abundant inhibitory neurotransmitter in the central nervous system, gamma-aminobutyric acid (GABA), exerts its main effects via a GABAA receptor that gates a chloride channel in the subsynaptic membrane. These receptors can contain a modulatory unit, the benzodiazepine receptor, through which ligands of different chemical classes can increase or decrease GABAA receptor function. We have now visualized a GABAA receptor in mammalian brain using monoclonal antibodies. The protein complex recognized by the antibodies contained high- and low-affinity binding sites for GABA as well as binding sites for benzodiazepines, indicative of a GABAA receptor functionally associated with benzodiazepine receptors. As the pattern of brain immunoreactivity corresponds to the autoradiographical distribution of benzodiazepine binding sites, most benzodiazepine receptors seem to be part of GABAA receptors. Two constituent proteins were identified immunologically. Because the monoclonal antibodies cross-react with human brain, they provide a means for elucidating those CNS disorders which may be linked to a dysfunction of a GABAA receptor.  相似文献   

2.
Cerebellar GABAA receptor selective for a behavioural alcohol antagonist   总被引:19,自引:0,他引:19  
Benzodiazepines are widely prescribed anxiolytics and anticonvulsants which bind with high affinity to sites on the GABAA receptor/Cl- channel complex and potentiate the effect of the neurotransmitter GABA (gamma-aminobutyric acid). The heterogeneity of benzodiazepine recognition sites in the central nervous system was revealed by studies showing different classes of GABAA receptor subunits (classes alpha, beta and gamma) and variant subunits in these classes, particularly in the alpha-class. Expression of recombinant subunits produces functional receptors; when certain alpha-variants are coexpressed with beta- and gamma-subunits the resulting receptors have pharmacological properties characteristic of GABAA-benzodiazepine type I or type II receptors. The alpha-variants are differentially expressed in the central nervous system and can be photoaffinity-labelled with benzodiazepines. Here we report a novel alpha-subunit (alpha 6) of cerebellar granule cells. We show that recombinant receptors composed of alpha 6, beta 2 and gamma 2 subunits bind with high affinity to the GABA agonist [3H]muscimol and the benzodiazepine [3H]Ro15-4513 but not the other benzodiazepines or beta-carboniles. The same distinctive pharmacology is observed with GABAA receptors from rat cerebellum immunoprecipitated by an antiserum specific for the alpha 6 subunit. We conclude that this alpha-subunit is part of a cerebellar receptor subtype, selective for Ro15-4513, an antagonist of alcohol-induced motor incoordination and ataxia.  相似文献   

3.
L Rohrer  M Freeman  T Kodama  M Penman  M Krieger 《Nature》1990,343(6258):570-572
The macrophage scavenger receptor, which has been implicated in the pathogenesis of atherosclerosis, has an unusually broad binding specificity. Ligands include modified low-density lipoprotein and some polyanions (for example, poly(I) but not poly(C]. The scavenger receptor type I (ref. 3) has three principal extracellular domains that could participate in ligand binding: two fibrous coiled-coil domains (alpha-helical coiled-coil domain IV and collagen-like domain V), and the 110-amino-acid cysteine-rich C-terminal domain VI. We have cloned complementary DNAs encoding a second scavenger receptor which we have termed type II. This receptor is identical to the type I receptor, except that the cysteine-rich domain is replaced by a six-residue C terminus. Despite this truncation, the type II receptor mediates endocytosis of chemically modified low-density lipoprotein with high affinity and specificity, similar to that of the type I receptor. Therefore one or both of the extracellular fibrous domains are responsible for the unusual ligand-binding specificity of the receptor.  相似文献   

4.
Regulation of glutamate receptor binding by the cytoskeletal protein fodrin   总被引:3,自引:0,他引:3  
R Siman  M Baudry  G Lynch 《Nature》1985,313(5999):225-228
The erythrocyte cytoskeleton, which consists primarily of a meshwork of spectrin and actin, controls cell shape and the disposition of proteins within the membrane. Proteins similar to spectrin have recently been found in diverse cells and tissues, and it is possible that they mediate the capping of cell-surface receptors, although this has not been demonstrated directly. In neurones, the spectrin-like protein fodrin lines the cortical cytoplasm and may link actin filaments to the membrane. Fodrin has been hypothesized to regulate the number of receptor binding sites on neuronal membranes for the putative neurotransmitter L-glutamate. Micromolar calcium concentrations activate the thiol protease calpain I, induce fodrin degradation and more than double the density of glutamate binding sites; these effects are all blocked by thiol protease inhibitors. We have now used specific antibodies to examine further the role of fodrin proteolysis in regulating glutamate receptors. We report that fodrin antibodies block the fodrin degradation and increase in glutamate binding normally induced by calcium, and so provide direct evidence for control of membrane receptors by a non-erythroid spectrin.  相似文献   

5.
G A Barr  T Lithgow 《Nature》1983,302(5907):431-432
The benzodiazepines are a class of drugs used to alleviate anxiety. As such they constitute one of the most commonly prescribed compounds, due in part to their efficacy and safety. The physiological effect of these drugs is probably through interactions with a low affinity benzodiazepine binding site and two (types 1 and 2) higher affinity sites. The ontogenesis of these latter two binding sites in the rat differs, with the type 2 binding site being predominant at birth and the type 1 binding site increasing in number after the second week after birth. The differential development of these two receptor types is important because the immature organism may have different physiological and behavioural responses from the adult. Here we demonstrate an important difference: that a prototypic benzodiazepine, chlordiazepoxide, and a water-soluble benzodiazepine, flurazepam, produce behavioural convulsions in the preweanling rat. The convulsions are antagonized by the benzodiazepine blocker Ro-15-1788. The triazolopyridizine CL-218872, specific to the type 1 receptor, does not share this action. We suggest that this paradoxical convulsant effect of chlordiazepoxide and flurazepam is due to activation of the type 2 receptor in the absence of the type 1 receptor in the immature rat.  相似文献   

6.
Molecular heterogeneity of benzodiazepine receptors   总被引:41,自引:0,他引:41  
W Sieghart  M Karobath 《Nature》1980,286(5770):285-287
Benzodiazepines exhibit reversible, stereospecific high affinity binding to mammalian brain membranes, and the respective binding sites for 3H-flunitrazepam represent pharmacologically and clinically relevant receptors for benzodiazepines. Recently it has been demonstrated that reversibly bound 3H-flunitrazepam becomes irreversibly attached to a specific membrane protein with apparent molecular weight of 50,000 when incubations are performed in the presence of UV light. Irreversible binding of 3H-flunitrazepam to this protein had pharmacological properties similar to reversible benzodiazepine receptor binding, indicating that 3H-flunitrazepam is a photoaffinity label for the benzodiazepine receptor. Using irreversible binding of 3H-flunitrazepam and subsequent electrophoretic separation of the labelled proteins in SDS-gels followed by fluorography, we found that in hippocampus and several other brain regions at least two different types of benzodiazepine receptors exist. Each seems to be associated with a gamma-aminobutyric acid (GABA) receptor.  相似文献   

7.
The site of action of the antispastic drug baclofen has long been considered to reside in the spinal cord although supraspinal effects have also been reported. This beta-chlorophenyl derivative of the neurotransmitter gamma-aminobutyric acid (GABA) depresses both monosynaptic and polysynaptic transmission in the cord possibly through a decrease in transmitter release rather than by any antagonism at postsynaptic receptors. Recently, baclofen has been shown to be a selective ligand for a bicuculline-insensitive GABA receptor (GABAB) site that occurs widely in the mammalian central nervous system including the spinal cord. The apparent importance of the cord in the therapeutic effects of this drug prompted us to ask whether they involve GABAB site activation. As an initial step we have located these receptors by autoradiography, comparing them with classical GABAA sites. We report here that GABAB sites, unlike GABAA sites, are present in high concentrations in laminae I, II, III and IV of the dorsal horn and that after the neonatal administration of capsaicin this binding is reduced by 40-50%.  相似文献   

8.
Since 1992, the study of biological functions of HIV-1 gp41 has made great progress. Experimental evidence from several research groups demonstrated that gp41 has a putative cellular receptor. A recombinant soluble gp41 (aa539–684) and gp41 immunosuppressive peptide (aa583–599) could bind to human B lymphocytes and monocytes, but weakly bind to T lymphocytes. It was found that gp41 contains two cellular binding sites (aa583–599 and 641–675). GP41 could selectively inhibit cell proliferation of human T, B lymphocytes and monocytes, enhance human MHC class I, II and ICAM-1 molecule expression on cell surface. Gp41 binding proteins and a monoclonal antibody against the first binding site could inhibit this modulation effect. Amino acid sequence homology exists between gp41 and human type I interferons, and the homologous region is located in the first binding site on gp41 and in the receptor binding site on type I interferons. Studies in other groups indicate that both binding sites in gp41 may be associated with HIV infection of cells. Peptides containing two binding sites could respectively inhibit HIV infection of cells. A monoclonal antibody recognizing the second binding site could neutralize lab-strains and recently separated strains of HIV-1. Besides, antibodies against two regions (homologous with gp41 binding sites) of SIV transmembrane protein gp32 could protect macaques from SIV infection. These results suggest that the study of gp41 binding sites and cellular receptor could contribute to understanding the mechanism of HIV infection and to developing HIV vaccine and anti-HIV drugs.  相似文献   

9.
Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology   总被引:48,自引:0,他引:48  
Neurotransmission effected by GABA (gamma-aminobutyric acid) is predominantly mediated by a gated chloride channel intrinsic to the GABAA receptor. This heterooligomeric receptor exists in most inhibitory synapses in the vertebrate central nervous system (CNS) and can be regulated by clinically important compounds such as benzodiazepines and barbiturates. The primary structures of GABAA receptor alpha- and beta-subunits have been deduced from cloned complementary DNAs. Co-expression of these subunits in heterologous systems generates receptors which display much of the pharmacology of their neural counterparts, including potentiation by barbiturates. Conspicuously, however, they lack binding sites for, and consistent electrophysiological responses to, benzodiazepines. We now report the isolation of a cloned cDNA encoding a new GABAA receptor subunit, termed gamma 2, which shares approximately 40% sequence identity with alpha- and beta-subunits and whose messenger RNA is prominently localized in neuronal subpopulations throughout the CNS. Importantly, coexpression of the gamma 2 subunit with alpha 1 and beta 1 subunits produces GABAA receptors displaying high-affinity binding for central benzodiazepine receptor ligands.  相似文献   

10.
Neurofibromatosis type I (NF1) is one of the most common single-gene disorders that causes learning deficits in humans. Mice carrying a heterozygous null mutation of the Nfl gene (Nfl(+/-) show important features of the learning deficits associated with NF1 (ref. 2). Although neurofibromin has several known properties and functions, including Ras GTPase-activating protein activity, adenylyl cyclase modulation and microtubule binding, it is unclear which of these are essential for learning in mice and humans. Here we show that the learning deficits of Nf1(+/-) mice can be rescued by genetic and pharmacological manipulations that decrease Ras function. We also show that the Nf1(+/-) mice have increased GABA (gamma-amino butyric acid)-mediated inhibition and specific deficits in long-term potentiation, both of which can be reversed by decreasing Ras function. Our results indicate that the learning deficits associated with NF1 may be caused by excessive Ras activity, which leads to impairments in long-term potentiation caused by increased GABA-mediated inhibition. Our findings have implications for the development of treatments for learning deficits associated with NF1.  相似文献   

11.
Abe S  Steinmann BU  Wahl LM  Martin GR 《Nature》1979,279(5712):442-444
HUMAN fibroblasts in culture synthesise both type I and type III collagen(1), with type I accounting for 70-90% of the total(2). In culture, the rates at which these proteins are synthesised is constant and apparently rather rigidly controlled(3). However, the proportions of these collagens differs in cells cultured with increased amounts of serum (increased type III/I)(4) as well as in cells obtained from patients with certain diseases. Cells from patients with the Ehlers-Danlos type IV syndrome make little or no type III collagen(5,6), whereas cells from patients with osteogenesis imperfecta have an increased type III/I (refs 7, 8). We have found that cells from some patients with systemic sclerosis (scleroderma), have a reduced type III/I ratio. However, as previously reported, these cells grew to a lower density than control cells(9). We report here that normal fibroblasts from human and guinea pig skin produce proportionally more type III collagen at high cell density, probably because of a reduction in the synthesis of type I collagen.  相似文献   

12.
In addition to expressing clonally distributed antigen-specific and major histocompatibility complex (MHC)-restricted receptors, T cells also express non-clonally distributed surface molecules that are involved in T-cell function. Among the most intriguing of the latter are L3T4 and Lyt 2, which are expressed on individual T lymphocytes in striking, though not absolute, concordance with their restriction by either class II or class I MHC determinants, and which are thought to contribute to the overall avidity of T-cell interactions by binding to monomorphic determinants on class II and class I MHC molecules, respectively. To examine the ability of T cells to recognize a single class II domain in the absence of the remainder of the Ia molecule, as well as to evaluate the structural basis for the putative interaction of L3T4 with Ia, a recombinant class II/class I murine MHC gene was constructed and introduced into mouse L cells. Here we demonstrate that a subset of class II allospecific cytotoxic T lymphocytes (CTL) can specifically recognize and lyse L-cell transfectants expressing an isolated polymorphic A beta 1 domain, and that anti-L3T4 antibody can block such killing, a result inconsistent with the highly conserved membrane-proximal domains of Ia acting as unique target sites for L3T4 binding.  相似文献   

13.
14.
Y Yoneda  K Kuriyama 《Nature》1980,285(5767):670-673
The specific binding of 3H-muscimol to synaptic membrane preparations obtained from the rate brain has been though to reflect the association of gamma-aminobutyric acid (GABA), a potential candidate as an inhibitory neurotransmitter in the mammalian central nervous system (CNS), with its synaptic receptors. Treatment of synaptic membranes with Triton X-100 significantly increases the specific binding of 3H-muscimol. Several reports also indicate the presence of endogenous substances, such as GABA, acidic protein and phosphatidylethanolamine, which inhibit Na-independent binding of 3H-GABA in the synaptic membranous fractions from the rat brain. We report here that in the supernatant obtained from Triton-treated synaptic membranes there exists a new type of endogenous inhibitor of 3H-muscimol binding which is apparently different from the inhibitory substances described previously. The new inhibitor has a low molecular weight (MW) and probably originated from neurones rather than glial cells. We have termed this endogenous inhibitor the GABA receptor binding inhibitory factor (GRIF).  相似文献   

15.
J Bonadio  P H Byers 《Nature》1985,316(6026):363-366
Although the perinatal lethal form of osteogenesis imperfecta (OI type II) occasionally results from large rearrangements within the genes encoding type I collagen, most mutations are far more subtle. The complexity of the human collagen genes precludes cloning and sequencing each gene from every patient, and we have therefore developed an approach to localizing mutations at the protein level. We report here that cells cultured from 15 infants with OI type II synthesized both normal type I procollagen and a form that was unstable, poorly secreted and excessively modified. Abnormal procollagen from different strains was overmodified to different extents. The patterns of overmodification we observed are best explained by mutations that disrupt the Gly-X-Y sequence of pro alpha chains, and thus alter the rate of propagation of triple helix from COOH-terminus to NH2-terminus. As a consequence, a given mutation allows overmodification of all three chains in a molecule NH2-terminal to its position in the triple helix.  相似文献   

16.
beta-Carboline-3-carboxylic acid ethyl ester antagonizes diazepam activity   总被引:4,自引:0,他引:4  
S S Tenen  J D Hirsch 《Nature》1980,288(5791):609-610
Analogous to the progression of events in the opiate receptor-enkaphalin area, the first reports that benzodiazepines have selective and specific high-affinity binding sites in brain have stimulated a search for the endogenous 'ligand' or substance that might normally act at these sites. Braestrup and co-workers have extracted from human urine a gamma-fraction (ref. 10) which they have recently identified as beta-carboline-3-carboxylic acid ethyl ester (beta CEE). They reported that this substance is extremely potent in displacing 3H-diazepam from brain binding sites and proposed that a beta-carboline-3-carboxylic acid derivative might, in part, be the endogenous ligand for the brain benzodiazepine receptor. We have examined several synthetically derived beta-carboline-3-carboxylic acid analogues and now present data obtained from testing only the beta CEE described by Braestrup et al. In addition to confirming these workers' observation that this compound is a potent displacer of 3H-diazepam from brain tissue, our pharmacological data indicate that beta CEE has activity that is opposite to, rather than similar to, that of diazepam.  相似文献   

17.
Selective antagonists of benzodiazepines   总被引:56,自引:0,他引:56  
Benzodiazepines produce most, if not all, of their numerous effects on the central nervous system (CNS) primarily by increasing the function of those chemical synapses that use gamma-amino butyric acid (GABA) as transmitter. This specific enhancing effect on GABAergic synaptic inhibition is initiated by the interaction of benzodiazepines with membrane proteins of certain central neurones, to which drugs of this chemical class bind with high affinity and specificity. The molecular processes triggered by the interaction of these drugs with central benzodiazepine receptors, and which result in facilitation of GABAergic transmission, are still incompletely understood. Theoretically, benzodiazepines could mimic the effect of hypothetical endogenous ligands for the benzodiazepine receptors, although there is no convincing evidence for their existence; in vitro studies indicate that benzodiazepines might compete with a modulatory peptide which is present in the supramolecular assembly formed by GABA receptor, chloride ionophore and benzodiazepine receptor and which reduces the affinity of the GABA receptor for its physiological ligand. The mechanisms of action of benzodiazepines at the molecular level are likely to be better understood following our recent discovery of benzodiazepine derivatives, whose unique pharmacological activity is to prevent or abolish in a highly selective manner at the receptor level all the characteristic centrally mediated effects of active benzodiazepines. Here, we describe the main properties of a representative of this novel class of specific benzodiazepine antagonists.  相似文献   

18.
S M Paul  P J Syapin  B A Paugh  V Moncada  P Skolnick 《Nature》1979,281(5733):688-689
The benzodiazepines are potent anticonvulsants for a wide variety of experimental and clinical seizure disorders. The demonstration of saturable, high-affinity and stereospecific binding sites for the benzodiazepines in the mammalian central nervous system suggests the presence of pharmacological receptors mediating the anticonvulsant properties of these compounds. The good correlation between the anticonvulsant potencies of a series of benzodiazepines and their ability to inhibit 3H-diazepam binding in vitro further supports this hypothesis, but evidence for a direct interaction between benzodiazepines and their receptors, and a subsequent inhibition of seizure activity (or elevation of seizure threshold) is lacking. Recent reports from our laboratory and others have demonstrated the feasibility of labelling benzodiazepine receptors in vivo following parental administration of tritiated benzodiazepine. This technique permits one to study the relationship between the anticonvulsant activity of the benzodiazepines in vivo and the number of 'drug-occupied' receptors in vitro. We now report that there is an excellent correlation between benzodiazepine receptor occupancy by diazepam and protection against pentylenetetrazol-induced seizures. Furthermore, these results demonstrate that only a small fraction of benzodiazepine receptors need be occupied to produce a complete anticonvulsant effect.  相似文献   

19.
M C Pepin  F Pothier  N Barden 《Nature》1992,355(6362):725-728
Glucocorticoids, in conjunction with their cognate receptors, exert negative-feedback effects on the hypothalamus-pituitary-adrenal axis, suppressing adrenal steroid secretions. Two types of corticosteroid receptor, distinguishable by their ability to bind corticosterone, have been identified as classical mineralocorticoid (type I) and glucocorticoid (type II) receptors by cloning their complementary DNAs. The type I receptor controls the basal circadian rhythm of corticosteroid secretion. Both receptor types are involved in negative feedback, but the type II receptor may be more important for terminating the stress response as it is the only one to be increased in animals rendered more sensitive to corticosteroid negative-feedback effects. Here we create a transgenic mouse with impaired corticosteroid-receptor function by partially knocking out gene expression with type II glucocorticoid receptor antisense RNA. We use this animal to study the glucocorticoid feedback effect on the hypothalamus-pituitary-adrenal axis.  相似文献   

20.
First visualization of glutamate and GABA in neurones by immunocytochemistry   总被引:17,自引:0,他引:17  
Immunocytochemical methods for peptides and serotonin have greatly advanced the study of neurones in which these substances are likely to be transmitters. Such direct techniques have not so far been available for the amino acid transmitter candidates. We report here the selective immunocytochemical visualization of the putative transmitters glutamate (Glu) and gamma-aminobutyrate (GABA) by the use of antibodies raised against the amino acids coupled to bovine serum albumin (BSA) with glutaraldehyde (GA). The tissue localizations of Glu-like and GABA-like immunoreactivities (Glu-LI and GABA-LI) matched those of specific uptake sites for Glu and GABA, and, in the case of GABA-LI, also that of the specific marker enzyme glutamic acid decarboxylase (GAD). Thus, GABA-LI was located in what are believed to be GABAergic inhibitory neurones, whereas Glu-LI was concentrated in excitatory, possibly glutamatergic neurones. Preliminary electron microscopic observations suggest that the transmitter amino acids are significantly concentrated in synaptic vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号