首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid Ni-31.7%Sn-2.5%Ge alloy was highly undercooled by up to 238 K(0.17TL) with glass fluxing and drop tube techniques.The dendritic growth velocity of primary Ni3Sn compound shows a power-law relation to undercooling and achieves a maximum velocity of 380 mm/s.The addition of Ge reduces its growth velocity as compared with the binary Ni75Sn25 alloy.A structural transition from coarse dendrites into equiaxed grains occurs once undercooling exceeds a critical value of about 125 K,which is accompanied by both grain refinement and solute trapping.The Ni3Sn intermetallic compound behaves like a normal solid solution phase showing nonfaceted growth during rapid solidification.  相似文献   

2.
Interfacial reactions of the Ni/AuSn/Ni and Cu/AuSn/Ni joints are experimentally studied at 330℃for various reflow times.The microstructures and mechanical properties of the as-solidified solder joints are examined.The as-solidified solder matrix of Ni/AuSn/Ni presents a typical eutecticξ-(Au,Ni)_5Sn+δ-(Au,Ni)Sn lamellar microstructure after reflow at 330℃for 30 s.After reflow for 60 s,a thin and flat(Ni,Au)_3Sn_2 intermetallic compound(IMC) layer is formed,and some needle-like(Ni,Au)_3Sn_2 phases grow f...  相似文献   

3.
The growth rule of the interfacial intermetallic compound (IMC) and the degradation of shear strength of Sn-0.8Ag-0.5Cu-2.0Bi-0.05Ni (SACBN)/Cu solder joints were investigated in comparison with Sn-3.0Ag-0.5Cu (SAC305)/Cu solder joints aging at 373, 403, and 438 K. The results show that (Cu1?x,Nix)6Sn5 phase forms between the SACBN solder and Cu substrate during soldering. The interfacial IMC thickens constantly with the aging time increasing, and the higher the aging temperature, the faster the IMC layer grows. Compared with the SAC305/Cu couple, the SACBN/Cu couple exhibits a lower layer growth coefficient. The activation energies of IMC growth for SACBN/Cu and SAC305/Cu couples are 111.70 and 82.35 kJ/mol, respectively. In general, the shear strength of aged solder joints declines continuously. However, SACBN/Cu solder joints exhibit a better shear strength than SAC305/Cu solder joints.  相似文献   

4.
Ternary Sn ?Zn? Ni alloys were prepared and equilibrated at 250 °C for 4? 15 weeks. The phases formed in these equilibrated alloys were determined experimentally. The isothermal section of Sn ?Zn? Ni system was constructed, based on the phase diagrams of the three constituent binary sy stems and the ternary phase equilibria data, determined in this study and referenced in literatures. 12 single-phase regions were identified in the Sn? Zn?Ni ternary system at 250 °C, including the three ternary compounds, δ , τ1 and τ2. There were 13 ternary phase regions and 23 binary phase regions in the 250 °C Sn ? Zn? Ni isothermal section. The solubility of Zn in the binary Sn ?Ni compounds is significant, and is 15.1% (mole fraction) in the Ni3Sn phase.  相似文献   

5.
Ti_(50)Zr_(27)Cu_8Ni_4Co_3Fe_2Al_3Sn_3(at%) amorphous filler metal with low Cu and Ni contents in a melt-spun ribbon form was developed for improving mechanical properties of Ti–6Al–4V alloy brazing joint through decreasing brittle intermetallics in the braze zone. Investigation on the crystallization behavior of the multicomponent Ti–Zr–Cu–Ni–Co–Fe–Al–Sn amorphous alloy indicates the high stability of the supercooled liquid against crystallization that favors the formation of amorphous structure. The Ti–6Al–4V joint brazed with this Ti-based amorphous filler metal with low total content of Cu and Ni at 1203K for 900s mainly consists of α-Ti, β-Ti,minor Ti–Zr-rich phase and only a small amount of Ti_3Cu intermetallics, leading to the high shear strength of the joint of about 460 MPa. Multicomponent composition design of amorphous alloys is an effective way of tailoring filler metals for improving the joint strength.  相似文献   

6.
Co1−xy Nix+y Sb3−x Sn x polycrystals were fabricated by vacuum melting combined with hot-press sintering. The effect of alloying on the thermoelectric properties of unfilled skutterudite Co1−x Ni x Sb3−x Sn x was investigated. A leap of electrical conductivity from the Co0.93Ni0.07Sb2.93Sn0.07 sample to the Co0.88Ni0.12Sb2.88Sn0.12 sample occurs during the measurement of electrical conductivity, indicating the adjustment of band structure by proper alloying. The results show that alloying enhances the power factor of the materials. On the basis of alloying, the thermoelectric properties of Co0.88Ni0.12Sb2.88Sn0.12 are improved by Ni-doping. The thermal conductivities of Ni-doping samples have no reduction, but their power factors have obvious enhancement. The power factor of Co0.81Ni0.19Sb2.88Sn0.12 reaches 3.0 mW·m−1·K−2 by Ni doping. The dimensionless thermoelectric figure of merit reaches 0.55 at 773 K for the unfilled Co0.81Ni0.19 Sb2.88Sn0.12.  相似文献   

7.
The composition characteristics of maraging stainless steels were studied in the present work investigation using a cluster-plus-glue-atom model. The least solubility limit of high-temperature austenite to form martensite in basic Fe–Ni–Cr corresponds to the cluster formula [NiFe12]Cr3,where NiFe12is a cuboctahedron centered by Ni and surrounded by 12 Fe atoms in FCC structure and Cr serves as glue atoms. A cluster formula [NiFe12](Cr2Ni) with surplus Ni was then determined to ensure the second phase(Ni3M) precipitation,based on which new multicomponent alloys [(Ni,Cu)16Fe192](Cr32(Ni,Mo,Ti,Nb,Al,V)16) were designed. These alloys were prepared by copper mould suction casting method,then solid-solution treated at 1273 K for 1 h followed by water-quenching,and finally aged at 783 K for 3 h. The experimental results showed that the multi-element alloying results in Ni3M precipitation on the martensite,which enhances the strengths of alloys sharply after ageing treatment. Among them,the aged [(Cu4Ni12)Fe192](Cr32(Ni8.5Mo2Ti2Nb0.5Al1V1)) alloy(Fe74.91Ni8.82Cr11.62Mo1.34Ti0.67Nb0.32Al0.19V0.36Cu1.78wt%) has higher tensile strengths with YS?1456 MPa and UTS?1494 MPa. It also exhibits good corrosion-resistance in 3.5 wt% NaCl solution.  相似文献   

8.
Microstructure evolution and reaction behavior of Cu–Ni alloy and B_4C power system was studied by in-situ and static experimental investigations along with theoretical calculations. The reaction process was as follows. Firstly,B_4C decomposed into B and C atoms, and then B atoms diffused into Cu–Ni matrix, leading to the formation of Ni_2B particles. Subsequently, Ni atoms diffused into B_4C, forming a loose mixture of Ni_2B and amorphous C at the initial powder boundary. Finally, with the completion of reaction, Ni_2B particles at the powder boundary grew into a monolithic block, and then C substance was excluded out and accumulated at the edge of this monolithic Ni_2B block. It is believed that the formation of Ni_2B phase is caused by the most negative change of Gibbs free energy among all the potential reactions between Ni–B and Ni–B_4C systems.  相似文献   

9.
The present work is focused on the studies of the phase-structural transformations in the La3-xMgxNi9 (x = 1.0, 1.1 and 1.2) alloys as active materials of negative electrodes in the Nickel-Metal Hydride(Ni/MH) batteries. The phase equilibria and phase-structural transformations in the alloys were probed by in situ neutron powder diffraction(NPD) at the temperatures ranging from 300 K to 1273 K using the measurements of the equilibrated alloys at 8 setpoint temper...  相似文献   

10.
To improve the properties of Sn10Sb8Cu solder alloy, two new solders (SnSbCuAg and SnSbCuNi) were formed by adding small amounts of Ag or Ni into the solder alloy. The results show that the melting point of the SnSbCuAg solder alloy decreases by 14.1℃ and the spreading area increases by 16.5% compared to the matrix solder. The melting point of the SnSbCuNi solder alloy decreases by 5.4℃ and the spreading area is slightly less than that of the matrix solder. Microstructure analysis shows that adding trace Ag makes the melting point decline due to the dispersed distribution of SnAg phase with low melting point. Adding trace Ni, Cu6Sn5 and (Cu, Ni)6Sn5 with polyhedron shape on the copper substrate can be easily seen in the SnSbCuNi solder alloy, which makes the viscosity of the melting solder increase and the spreading property of the solder decline.  相似文献   

11.
In the present study Mg_2Ni-type compounds alloyed independently with Ti,V,Fe and Si were successfully prepared by wet-milling followed by sintering.Although these alloyed Mg_2Ni compounds exhibited a similar hydrogen storage mechanism as that of pure Mg_2Ni,the dissolution of Ti,V or Fe into the Mg_2NiH_4lattice had a considerable catalytic effect on hydrogen desorption from additional MgH_2.The further structure investigations clearly indicated that the substitution of Ti for Ni could suppress the formation of the micro-twined low-temperature phase(LT2)and promote the formation of the high-temperature phase(HT),thus resulting in remarkably improved hydrogen desorption kinetics for the Mg_2Ni_(0.92)Ti_(0.08)–H system.  相似文献   

12.
The phase equilibria,diffusion growth and diffusivities in the Ni-Al-Pt system at 1 150,1 200 and 1 250℃were studied using Pt/β-NiAl diffusion couples.Based on the measured concentration profiles coupled with the local equilibrium hypothesis,the tie-lines between neighboring phases were determined.Two intermediate phases,Pt_3Al andα-NiPt(Al),are found to develop between the Pt andβ-NiAl couples.The thicknesses of Pt_3Al andα-NiPt(Al) layers varies linearly with the square of annealing time, indicating th...  相似文献   

13.
通过对断口形貌和界面微观组织的观察分析,研究了3种Sn-Bi/Cu焊接接头的剪切断裂机理.结果表明:3种Sn-Bi/Cu焊接接头均在弹性变形阶段断裂,并且均沿Sn-Bi焊料/Cu基板界面处断裂.孔洞降低了3种Sn-Bi/Cu焊接接头的有效连接面积,从而降低了其剪切强度.根据3种Sn-Bi/Cu焊接接头断口形貌,Sn59.9Bi40Cu 0.1/Cu和Sn57.9Bi40Zn2Cu 0.1/Cu焊接接头剪切断裂机制属于准解理、沿晶脆性断裂和韧窝的混合型断裂,而Sn42Bi58/Cu焊接接头剪切断裂机制属于准解理断裂.微观组织分析显示,3种焊料合金焊接接头界面处的金属间化合物层均为连续的Cu6Sn5相.  相似文献   

14.
The electromigration behavior of eutectic SnAg solder reaction couples was studied at various temperature (25 and 120℃ when the current density was held constant at 104 A/cm2 or 5×103 A/cm2. Under the current density of 104 A/cm2, scallop type Cu6Sn5 spalls and migrates towards the direction of electron flow at room ambient temperature (25℃), but transforms to layer type Cu3Sn and leaves Kirkendall voids in it at high ambient temperature (120℃). Under the current density of 5×103 A/cm2 plus room ambient temperature, no obvious directional migration of metal atoms/ions is found. Instead, the thermal stress induced by mismatch of dissimilar materials causes the formation of superficial valley at both interfaces. However, when the ambient temperature increases to 120℃, the mobility of metal atoms/ions is enhanced, and then the grains rotate due to the anisotropic property of β-Sn.  相似文献   

15.
Based on the first-principles plane wave pseudo-potential method, the electronic structure and electrochemical performance of LixSn4Sb4 (x=2, 4, 6, and 8) and LixSn1-xSb4 (x=9, 10, 11, and 12) phases were calculated. A Sn-Sb thin film on a Cu foil was also prepared by radio frequency magnetron sputtering. The surface morphology, composition, and lithium intercalation/extraction behavior of the fabricated film were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV). Lithium atoms can easily insert into and extract out of the β-SnSb cell due to the low lithium intercalation formation energy. It is found that lithium atoms first occupy the interstitial sites, and then Sn atoms at the lattice positions are replaced by excessive lithium. The dissociative Sn atoms continue to produce different Li-Sn phases, which will affect the electrode stability and lead to the undesirable effect due to their large volume expansion ratio. The calculated lithium intercalation potential is stable at about 0.7 V, which is consistent with the experimental result.  相似文献   

16.
Rare-earth AB5-type La–Ni–Al hydrogen storage alloys are widely studied due to their extensive application potentials in hydrogen isotope storage, hydrogen isotope isolation and hydrogen compressors, etc. Good hydriding/dehydriding kinetics, easily activation, high reversibility are important factors for their practical application. However, their overall hydrogen storage performance, especially plateau pressure and hydrogen absorption/desorption durability need to be further optimized. In this study, the microstructures and the hydrogen storage properties of as-cast, annealed, and melt-spun LaNi3.95Al0.75Co0.3 alloys were investigated. The experimental results of XRD and SEM showed that all alloys contained a pure CaCu5 type hexagonal structure LaNi4Al phase. The cell volume increased in an order of annealed ?> ?melt-spun ?> ?as-cast, resulting in a lower hydrogen absorption/desorption plateau pressure and a more stable hydride phase. The hydrogen storage capacity of three alloys was almost the same. The slope factor of the annealed and melt-spun alloys is smaller than the as-cast alloy, indicating that heat-treatment process can make the alloys more uniform. For the cycle stability of the alloys, the hydrogen absorption rate of the annealed alloy and melt-spun alloy was much faster than that of the as-cast alloy after 500 cycles. The melt-spun alloy showed high pulverization resistance during hydrogen absorption/desorption, and exhibited an excellent cycling retention of 99% after 500 cycles, suggesting that melt-spinning process can enhance the cycle stability and improve the cycle life of the alloy.  相似文献   

17.
Dissimilar brazing of Ti2AlNb-based alloy and Ni-based wrought superalloy (GH536) was studied using NiCrFeSiB filler metal. The Ti2AlNb/GH536 joints were analyzed by scanning electron microscope (SEM) equipped with an electron probe micro-analyzer (EPMA), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The formation mechanism of interfacial microstructure and mechanical properties of Ti2AlNb/GH536 joints were studied. The results indicated that Ti2Ni(Al,Nb), AlNi2Ti and TiB2 reaction layers were formed in the joint adjacent to Ti2AlNb base metal. These layers resulted in high micro-hardness and the weak link of the joint. γ solid solution was formed through isothermal solidification and β1-Ni3Si phase precipitated in the γ solid solution during cooling process. Ni3B, β1-Ni3Si and CrB phases appeared in the centre of the joint. Blocky and needle-like borides formed within the diffusion affected zone of GH536 base alloy. The maximum tensile strength of Ti2AlNb/GH536 joints reached 425 ?MPa ?at room temperature and the strength value of 373 ?MPa was maintained at 923 ?K.  相似文献   

18.
The reactive wetting kinetics of a Sn-30Bi-0.5Cu Pb-free solder alloy on a Cu substrate was investigated by the sessile drop method from 493 to 623 K.The triple line frontier,characterized by the drop base radius R was recorded dynamically with a high resolution CCD using different spreading processes in an Ar-H 2 flow.We found a good agreement with the De Gennes model for the relationship between ln(dR/dt) and lnR for the spreading processes at 493 and 523 K.However,a significant deviation from the De Gennes model was found for the spreading processes at 548 and 623 K.Our experimental results show a complicated temperature effect on the spreading kinetics.Intermetallics at the Sn-30Bi-0.5Cu/Cu interface were identified as Cu 6 Sn 5 adjacent to the solder and Cu 3 Sn adjacent to the Cu substrate.The intermetallic compounds effectively enhanced the triple line mobility because of reaction product formation at the diffusion frontier.  相似文献   

19.
Annealing crystallization of ultrafine NiB amorphous alloy prepared by the chemical reduction method was studied by DTA, XRD and XAFS techniques. The XRD and XAFS results have revealed that the crystallization process of ultrafine NiB amorphous alloy proceeds in two steps. First, ultrafine NiB amorphous alloy is crystallized to form metastable nanocrystalline Ni3B at an annealing temperature of 325℃. Second, the nanocrystalline Ni3B is further decomposed into crystalline Ni at 380℃ or higher tempera ture, the local structure around Ni atoms in resultant product is similar to that in Ni foil. It was found that the catalytic activity of nanocrystalline Ni3B for benzene hydrogenation is much higher than that of ultrafine NiB amorphous alloy or crystalline Ni. The result indicates that the active sites of nanocrystalline Ni3B for benzene hydrogenation are composed of both Ni and B with proper geometry configuration.  相似文献   

20.
The rapid solidification of undercooled liquid Ni_(45)Fe_(40)Ti_(15)alloy was realized by glass fluxing technique.The microstructure of this alloy consists of primaryγ-(Fe,Ni)phase and a small amount of interdendritic pseudobinary eutectic.The primaryγ-(Fe,Ni)phase transferred from coarse dendrite to fragmented dendrite and the lamellar eutectic became fractured with the increase of undercooling.The growth velocity ofγ-(Fe,Ni)dendrite increased following a power relation with the rise of undercooling.The addition of solute Ti suppressed the rapid growth ofγ-(Fe,Ni)dendrite,as compared with the calculation results of Fe-Ni alloy based on LKT model.The microhardness values of the alloy and the primaryγ-(Fe,Ni)phase increased by 1.5 times owing to the microstructural refinement caused by the rapid dendrite growth.The difference was enlarged as undercooling increases,resulting from the enhanced hardening effects on the alloy from the increased grain boundaries and the second phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号