首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
《河南科学》2016,(6):887-891
应用基于遗传算法的BP神经网络构建马铃薯晚疫病预测模型,对原始样本进行归一化处理,应用遗传算法优化BP神经网络的结构、初始权值、阀值,通过BP神经网络训练构建马铃薯晚疫病预测模型,利用遗传算法来改善BP神经网络算法本身的缺陷,提高学习精度,预测准确度.仿真结果表明,GA-BP神经网络模型预测准确度较高,误差率较低,稳定性较好.实践证明,将GA-BP神经网络算法应用于马铃薯晚疫病预测模型中是可行的,能够实现晚疫病流行程度的快速预测.  相似文献   

3.
4.
基于GA-BP算法的模糊神经网络控制器研究   总被引:1,自引:0,他引:1  
提出了一种基于GA-BP算法的模糊神经网络控制器,将GA的离线全局寻优及BP实时学习相结合,克服了单独应用GA算法或BP算法调节模糊神经网络控制器参数存在的缺陷。仿真结果表明经GA-BP算法优化的控制器性能优于传统算法调节的控制器。  相似文献   

5.
提出了一种基于遗传算法改进的BP神经网络(GA-BP)的颗粒阻尼效应预测模型.首先通过悬臂梁阻尼检测实验建立数据集,然后对建立的数据集进行训练非线性复杂模型,用于描述颗粒阻尼器的阻尼效应.为了进一步验证所提模型的有效性,通过CA-YD-1181压电传感器采集相关数据进行二次验证.结果表明,与传统的BP神经网络预测模型相比,遗传算法优化后的模型能够通过不同参数的变化对颗粒阻尼器减振效果进行精准预测,收敛速度提高了近36.8%.该模型具有良好的拟合效果,能准确、合理地预测阻尼特性,并调整颗粒阻尼器的相关参数.  相似文献   

6.
尤游  王蒙 《佳木斯大学学报》2020,38(4):74-76,94
为精准预报空气质量,以PM2.5为例对其自建点监测浓度进行校准,选取6种污染物浓度以及5个环境因素建立神经网络模型。BP算法由于权值和阈值的随机性可能存在局部最优、过渡拟合等缺陷,所以利用遗传算法优化BP神经网络,构建GA-BP神经网络模型。仿真结果表明,GA-BP神经网络的校准平均绝对百分比误差和均方误差分别为12.56%和0.0197,明显低于BP神经网络,说明该模型校准效果更好,能明显提高空气质量预报的准确率。  相似文献   

7.
磨粒是汽车润滑系统运转过程中部件与部件之间摩擦的副产物。针对目前磨粒分类准确度低和分类效率低的问题,提出了基于GA-BP神经网络的汽车润滑系统中磨粒分类的算法。采用BP神经网络深度学习,同时对BP神经网络运用遗传算法进行改进,通过GA-BP神经网络同BP神经网络相对比,结果表明GA-BP神经网络更稳定、更迅速。经过对磨粒分类的对比,可知深度学习过的GA-BP神经网络分类的准确率高达96.92%,符合汽车润滑系统中磨粒分类的准确性及高效率性的要求。  相似文献   

8.
9.
鉴于制药厂对温度的严格要求,对温度传感器DS18B20在10℃-30℃(制药厂要求温度范围)内进行校准.经BP神经网络校准后,最大误差从0.5℃降至0.24℃.BP神经网络随机生成初始参数易造成局部最优和收敛速度慢,故利用遗传算法对其进行优化.优化后收敛轮数从25降为13,最大误差从0.24℃降为0.21℃,精度在原BP神经网络基础上提升了12.5%.实验结果表明,利用遗传算法优化BP神经网络可加快训练收敛速度,提升校准结果精度.此外,采用以Cortex-M3为内核的STM32F103系列MCU开发温度传感器校准系统,将训练好的神经网络搭载到相应的校准模块.经调试,此系统校准精度与Matlab测试结果一致.  相似文献   

10.
结合深海集矿机的实际作业环境,建立集矿机的实时避障神经网络模型。该模型采用多传感器融合技术,将声纳传感器采集到的环境信息进行处理后作为BP神经网络的输入;设定车体的注视向量、转向角和速度为网络输出;根据集矿机实际行进情况,并综合人的行走经验,设置能够实现实时避障的网络导师训练信号。引入遗传算法对已建立BP避障模型进行改进,以克服局部极小值问题。仿真研究表明:遗传算法优化后的BP神经网络,能够有效训练达到预期目标,并能在很大程度上克服BP网络的局部极小值问题。在Matlab中给出障碍物环境中的避障仿真结果,表明此方法的可行性。  相似文献   

11.
基于GA-BP神经网络的金精矿品位的预测   总被引:1,自引:0,他引:1  
在对金矿生产过程进行大量实际调研工作的基础上,分别采用BP神经网络和遗传算法优化BP神经网络的方法,建立了金精矿品位的预测模型,以现场采集的978组数据作为样本,运用噪声平滑技术进行数据预处理,筛选了770组数据,运用其中的650组数据建模,并运用其余的120组数据对模型进行了验证.通过对两个模型的预测误差分析,得出用遗传算法优化的BP神经网络(GA-BP)预测精度更高,当预测相对误差在±2%范围内时,模型的预测精度达到97.5%.  相似文献   

12.
为提高滚动轴承故障模式识别技术的研究,基于IGA-BP神经网络的故障诊断原理,运用IGA对BP神经网络的权值与阈值进行调整和优化,利用小波包分解获得轴承振动信号的特征向量,进行了滚动轴承故障的诊断实验研究,对故障模式进行识别。结果表明,IGA-BP神经网络方法具有很强的故障识别能力,说明利用IGA-BP神经网络方法进行轴承故障诊断是可行的。  相似文献   

13.
随着神经网络在数据分析、预测及生产控制中的应用,神经网络的优化学习成为研究的一个重要课题。通过探讨BP神经网络模型的建立过程,针对BP神经网络的模型优化问题进行了详细研究。并通过对银行客户分类的仿真实验证明,优化模型能够有效地提高BP神经网络的收敛速度及预测精度。  相似文献   

14.
基于改进BP神经网络模型的地面沉降预测及分析   总被引:2,自引:0,他引:2  
针对区域性地面沉降问题,用遗传算法优化BP神经网络的初始权重,建立了地面沉降预测模型.该模型克服了BP神经网络模型存在的收敛速度慢、易陷入局部极小点的缺点采用后验差检验法对模型拟合结果进行了检验,结果表明模型具有很好地拟合与泛化能力.应用该模型对地下水位影响强度进行了分析,表明地面沉降与地下水位存在一致响应趋势.  相似文献   

15.
针对传统弯辊力预设定模型的缺陷和带钢热连轧轧制特点,利用某钢铁公司1580mm热轧线生产数据,对精轧机组末机架进行了基于遗传算法优化神经网络的弯辊力预报模型研究.以大量实际数据作为神经网络训练输入,充分考虑了输入参数之间的影响作用,模型结构简单、容易实现,其整体性能用平均绝对百分误差、均方根误差和相关系数R评价.通过将预测结果与实测结果比较,验证了模型的精度.研究发现,提出的弯辊力预测模型相比于传统模型可实现高度非线性拟合,适用于提高热轧带钢头部板形控制精度,为实际弯辊力设定提供指导和试验基础.  相似文献   

16.
在实际生产过程中,传统轧制力数学模型存在较大误差,影响计算精度.提出将BP网络与修正遗传算法相结合,利用BP网络的指导性搜索思想和遗传算法的全局搜索能力预测中厚板轧机轧制力,并建立预测模型.同时,根据模型编制相应的程序及界面.以邯钢中板厂、普阳中板厂现场数据为基础,通过数据优选,选择较优数据进行离线轧制力预测,预测精度优于传统的数学模型,预报精度的相对误差可以控制在4%以内,能够满足生产需要.  相似文献   

17.
BP神经网络(BPNN)模型对移动通信用户流失的预测有较好的效果,但其全局搜索能力相对较弱,对初始网络权重非常敏感,因此本文通过对用户通信行为的分析,提出一种基于改进GA-BP的移动用户流失预测算法:用改进的遗传算法对BPNN的权值和阈值进行初始化,从而提高预测模型的准确率.改进的遗传算法采用一种自适应的交叉概率和变异概率计算策略,提高了遗传算法寻找全局最优解的能力.通过对比实验发现,本文构建的移动用户流失预测模型,在预测准确率上有着很好的表现.  相似文献   

18.
研究了应用BP网络在辊道窑炉温度过程中建立数学模型的方法.所研究的辊道窑炉的烧成段有八个区,靠燃料阀门开度调节温度.选取三层网络,辊道窑炉烧成段各区的燃料阀门开度作为网络的输入,各区的温度作为网络的输出,隐层节点数取10,建立温度过程数学模型.通过计算机仿真计算和实测温度曲线比较,满足误差范围要求.证明人工神经网络建立的数学模型能较准确计算辊道窑炉参数,为实现辊道窑炉生产过程的优化研究奠定了基础  相似文献   

19.
文章针对一类非线性系统,采用加入阻尼项的权值调整BP算法,设计了基于BP算法的神经网络内模控制器,并进行了仿真,结果显示该控制器对阶跃信号和扰动均无稳态误差,对非线性环节有较好的控制效果。  相似文献   

20.
人工神经网络的应用与研究是近几年迅速发展起来的一个国际性前沿研究课题.介绍了人工神经网络及BP神经网络算法,并对传统的BP算法进行改进.建立了基于BP神经网络动车组传动系统滚动轴承智能诊断系统方法,进行了状态识别神经网络训练与测试.通过对外环、内环、滚动体故障和正常情况下数据的计算、仿真和对比,分析了四种情况下在不同网络设计中的识别效率.基于BP神经网络测试的实际输出与期望输出值非常接近,该网络具有良好的识别性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号