共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
基于GA-BP算法的模糊神经网络控制器研究 总被引:1,自引:0,他引:1
提出了一种基于GA-BP算法的模糊神经网络控制器,将GA的离线全局寻优及BP实时学习相结合,克服了单独应用GA算法或BP算法调节模糊神经网络控制器参数存在的缺陷。仿真结果表明经GA-BP算法优化的控制器性能优于传统算法调节的控制器。 相似文献
5.
提出了一种基于遗传算法改进的BP神经网络(GA-BP)的颗粒阻尼效应预测模型.首先通过悬臂梁阻尼检测实验建立数据集,然后对建立的数据集进行训练非线性复杂模型,用于描述颗粒阻尼器的阻尼效应.为了进一步验证所提模型的有效性,通过CA-YD-1181压电传感器采集相关数据进行二次验证.结果表明,与传统的BP神经网络预测模型相比,遗传算法优化后的模型能够通过不同参数的变化对颗粒阻尼器减振效果进行精准预测,收敛速度提高了近36.8%.该模型具有良好的拟合效果,能准确、合理地预测阻尼特性,并调整颗粒阻尼器的相关参数. 相似文献
6.
为精准预报空气质量,以PM2.5为例对其自建点监测浓度进行校准,选取6种污染物浓度以及5个环境因素建立神经网络模型.BP算法由于权值和阈值的随机性可能存在局部最优、过渡拟合等缺陷,所以利用遗传算法优化BP神经网络,构建GA-BP神经网络模型.仿真结果表明,GA-BP神经网络的校准平均绝对百分比误差和均方误差分别为12.... 相似文献
7.
磨粒是汽车润滑系统运转过程中部件与部件之间摩擦的副产物。针对目前磨粒分类准确度低和分类效率低的问题,提出了基于GA-BP神经网络的汽车润滑系统中磨粒分类的算法。采用BP神经网络深度学习,同时对BP神经网络运用遗传算法进行改进,通过GA-BP神经网络同BP神经网络相对比,结果表明GA-BP神经网络更稳定、更迅速。经过对磨粒分类的对比,可知深度学习过的GA-BP神经网络分类的准确率高达96.92%,符合汽车润滑系统中磨粒分类的准确性及高效率性的要求。 相似文献
8.
鉴于制药厂对温度的严格要求,对温度传感器DS18B20在10℃-30℃(制药厂要求温度范围)内进行校准.经BP神经网络校准后,最大误差从0.5℃降至0.24℃.BP神经网络随机生成初始参数易造成局部最优和收敛速度慢,故利用遗传算法对其进行优化.优化后收敛轮数从25降为13,最大误差从0.24℃降为0.21℃,精度在原BP神经网络基础上提升了12.5%.实验结果表明,利用遗传算法优化BP神经网络可加快训练收敛速度,提升校准结果精度.此外,采用以Cortex-M3为内核的STM32F103系列MCU开发温度传感器校准系统,将训练好的神经网络搭载到相应的校准模块.经调试,此系统校准精度与Matlab测试结果一致. 相似文献
9.
结合深海集矿机的实际作业环境,建立集矿机的实时避障神经网络模型。该模型采用多传感器融合技术,将声纳传感器采集到的环境信息进行处理后作为BP神经网络的输入;设定车体的注视向量、转向角和速度为网络输出;根据集矿机实际行进情况,并综合人的行走经验,设置能够实现实时避障的网络导师训练信号。引入遗传算法对已建立BP避障模型进行改进,以克服局部极小值问题。仿真研究表明:遗传算法优化后的BP神经网络,能够有效训练达到预期目标,并能在很大程度上克服BP网络的局部极小值问题。在Matlab中给出障碍物环境中的避障仿真结果,表明此方法的可行性。 相似文献
10.
泡沫轻质土的抗压强度是其重要的力学性能。精准地预测和调整泡沫轻质土的抗压强度,对于提高施工效率有重要的现实意义。为实现对泡沫轻质土抗压强度的智能控制和优化,设计了包含4节点输入层、8节点隐层、1节点输出层的拓扑结构,输入层采用遗传算法(GA)对BP神经网络的权重和阈值进行改进。以水固比、粉灰比、细集料掺合比以及气泡率4个参数作为输入参数,28天抗压强度为输出参数,以室内实验数据作为样本,使用均方差(MSE)、决定系数(R2)和相对误差等对优化前后两种模型进行验证和对比分析,并以此为基础建立了基于不同性能需求的配合比设计方法。结果表明:相比BP神经网络,GA-BP神经网络训练的适应度函数值更大、均方差更小,预测值与实际值的拟合度可达到0.946,具有更强的预测精度和泛化能力,同时遗传算法的全局搜索能力也弥补了BP神经网络容易陷入局部最优的缺陷,且能更好地指导粉煤灰泡沫轻质土强度预测配合比设计。基于GA-BP神经网络的泡沫轻质土强度增长预测模型可实现对泡沫轻质土抗压强度的灵活调整,对于工程施工具有重要的参考价值。 相似文献
11.
为提高滚动轴承故障模式识别技术的研究,基于IGA-BP神经网络的故障诊断原理,运用IGA对BP神经网络的权值与阈值进行调整和优化,利用小波包分解获得轴承振动信号的特征向量,进行了滚动轴承故障的诊断实验研究,对故障模式进行识别。结果表明,IGA-BP神经网络方法具有很强的故障识别能力,说明利用IGA-BP神经网络方法进行轴承故障诊断是可行的。 相似文献
12.
随着神经网络在数据分析、预测及生产控制中的应用,神经网络的优化学习成为研究的一个重要课题。通过探讨BP神经网络模型的建立过程,针对BP神经网络的模型优化问题进行了详细研究。并通过对银行客户分类的仿真实验证明,优化模型能够有效地提高BP神经网络的收敛速度及预测精度。 相似文献
13.
基于改进BP神经网络模型的地面沉降预测及分析 总被引:2,自引:0,他引:2
针对区域性地面沉降问题,用遗传算法优化BP神经网络的初始权重,建立了地面沉降预测模型.该模型克服了BP神经网络模型存在的收敛速度慢、易陷入局部极小点的缺点采用后验差检验法对模型拟合结果进行了检验,结果表明模型具有很好地拟合与泛化能力.应用该模型对地下水位影响强度进行了分析,表明地面沉降与地下水位存在一致响应趋势. 相似文献
14.
文章针对一类非线性系统,采用加入阻尼项的权值调整BP算法,设计了基于BP算法的神经网络内模控制器,并进行了仿真,结果显示该控制器对阶跃信号和扰动均无稳态误差,对非线性环节有较好的控制效果。 相似文献
15.
研究了应用BP网络在辊道窑炉温度过程中建立数学模型的方法.所研究的辊道窑炉的烧成段有八个区,靠燃料阀门开度调节温度.选取三层网络,辊道窑炉烧成段各区的燃料阀门开度作为网络的输入,各区的温度作为网络的输出,隐层节点数取10,建立温度过程数学模型.通过计算机仿真计算和实测温度曲线比较,满足误差范围要求.证明人工神经网络建立的数学模型能较准确计算辊道窑炉参数,为实现辊道窑炉生产过程的优化研究奠定了基础 相似文献
16.
人工神经网络的应用与研究是近几年迅速发展起来的一个国际性前沿研究课题.介绍了人工神经网络及BP神经网络算法,并对传统的BP算法进行改进.建立了基于BP神经网络动车组传动系统滚动轴承智能诊断系统方法,进行了状态识别神经网络训练与测试.通过对外环、内环、滚动体故障和正常情况下数据的计算、仿真和对比,分析了四种情况下在不同网络设计中的识别效率.基于BP神经网络测试的实际输出与期望输出值非常接近,该网络具有良好的识别性能. 相似文献
17.
采用RBF神经网络方法建立热连轧精轧的厚度模型,通过比较有、无理论模型输入的神经网络厚度模型确定出理论数据在神经网络应用中的重要性。通过比较BP神经网络和RBF神经网络分别建立的厚度模型凸现出RBF神经网络厚度模型的优越性,并在应用过程中解决了过拟合问题。 相似文献
18.
依据神经网络分类器的设计原理,设计了一种有效的遗传算法,实验结果表明:算法优化后的神经网络分类器不但学习速度快,还能保证分类精度. 相似文献
19.
基于优化遗传算法的灰色-RBF神经网络预测模型研究 总被引:1,自引:0,他引:1
董辉 《新乡学院学报(自然科学版)》2012,(3):237-240
根据灰色系统、RBF神经网络的模型及遗传算法原理,提出了一种基于灰色系统与改进的遗传算法RBF神经网络的系统预测模型,采用改进的遗传算法对该模型进行全局优化,最后用实验验证了模型的有效性,对比分析了单独使用GM(1,1)和RBF神经网络模型的预测结果.结果证明,优化后的预测模型的预测精度高于另外两种模型的预测结果. 相似文献
20.
在分析反映管道堵塞工艺参数的基础上,提出了一种基于BP神经网络的细小液体管道预测方法,通过收集管道堵塞时的各种工艺参数,建立预测模型。仿真结果表明,模型预测结果与实际堵塞结果非常吻合,并能成功用于实际的细小管道的堵塞预测。 相似文献