共查询到20条相似文献,搜索用时 15 毫秒
1.
基于学习者能力,针对基于循环神经网络(RNN)和长短期记忆(LSTM)网络的深度知识追踪(DKT)算法对早期知识点关注的不足,提出一种加入注意力机制的DKT算法,并用时隙聚类的方法对不同能力学习者动态分组并赋予不同的注意力权值,以建立更平衡、更客观的知识记忆程度权重分布模型.常用公开数据集上的实验结果表明:该模型优于2种基准模型和2种消融实验模型,说明所提出的模型能更好地表现学习者的知识状态. 相似文献
2.
随着深度学习的快速发展,利用目标检测算法对航拍绝缘子图像进行缺陷检测成为绝缘子巡检的主要方式.针对传统目标检测算法对小目标的检测精度较低、特征图的表征能力较弱和提取的关键信息较少的问题,提出以YOLOv5l为基础网络的改进的基于注意力机制和多尺度特征融合的绝缘子缺陷检测方法 AMF-YOLOv5l(Attention Mechanism and Multi-Scale Feature Fusion Based on YOLOv5l).首先,通过增加一个小目标检测头,提高模型对小目标的检测性能;然后,构造DSPP(Dilated Spatial Pyramid Pooling)模块,充分融合多尺度特征,增强特征图的表征能力;最后,引入CA(Coordinate Attention)注意力机制,使网络更加专注于关键信息.在航拍绝缘子数据集APID(Aerial Photographic Insulator Dataset)以及两个公共数据集PASCAL VOC和MS COCO上分别验证该方法的可行性.实验结果表明,在APID数据集中该方法的AP(Average Precision)比YOL... 相似文献
3.
为了降低视频传感器网络中的网络负载,减少能量消耗、降低时延,提出了一种分层的基于注意力模型的多质量图像融合方法.通过对节点的结构化部署及视图间的区域映射,建立了基于动态注意力的节点唤醒机制.通过使用低层节点采集的高质量图像对高层节点低质量图像的融合,使注意力目标得到增强.实验结果证明了该融合方法的有效性. 相似文献
4.
为提高互联网入侵检测方法的准确率,提出一种卷积神经网络与注意力机制结合的入侵检测方法。利用Borderline-SMOTE过采样算法和Min Max归一化对数据进行预处理,有效缓解入侵数据量差异较大问题,提升非平衡数据检测性能;使用卷积神经网络Inception结构多尺度对数据进行特征提取,并配合注意力机制进行维度更新,提高模型处理海量数据时特征表达的准确性。研究结果表明:入侵检测方法的平均准确率为99.57%;相较于SVM方法、CNN方法、RNN方法、BLS-GMM方法,准确率分别提升了4.48%、1.35%、1.62%和0.04%,召回率分别提高了4.48%、1.36%、1.62%和0.14%。 相似文献
5.
针对现有去雾算法缺乏对雾霾图像不同区域噪音浓度的关注以及远近景特征的区分问题,本文提出了一种新的生成对抗网络模型.模型中通过两个UNet3+网络实现全尺度的跳跃连接和深度监督,使用多尺度融合的方法结合不同尺度特征图中的高低级语义;而深度监督的加入可以更好地学习图像中的远近层次表示.同时在生成器结构中加入融合改进自注意力机制的多尺度金字塔特征融合模块,以便更好地保留特征图的多尺度结构信息,并且提高了对不同雾霾浓度区域的关注度.实验结果显示,在NTIRE 2020、NTIRE 2021、O-Haze数据集和Dense-Haze数据集上, 本文所提出的算法网络相比BPPNET等其他先进算法可以得到更好的视觉效果,在Dense-Haze数据集上,峰值信噪比和结构相似性指数分别达到24.82和0.769. 相似文献
6.
针对特征提取过程中缺乏对人群区域的针对性,不同大小人头目标不能同时检测以及特征融合时多尺度特征信息丢失问题,提出多尺度注意力模块,增强特征对高密度人群区域的关注。采用多尺度空洞卷积,结合提出的多通道特征融合模块,提取更完善的多尺度特征,提高对不同尺寸人头计数能力;利用密度图回归模块,融合多尺度特征,减少了多尺度信息的损耗。实验结果表明,本算法的计数结果更精确稳定。 相似文献
7.
8.
《太原理工大学学报》2021,(4)
提出了一种基于Transformer进行知识追踪的方法,改进了互动记录的嵌入表示,设计了适用于该方法的门结构,并且优化了自注意力运算子层的输入处理以提高深度知识追踪模型的预测性能。在知识追踪的4个常用公共数据集上的实验结果表明,与传统方法相比,提出的模型能更好地反映学习者对知识点的掌握情况,并且在样本量大的数据集上有更好表现。 相似文献
9.
为实现复杂场景下多尺度仪表检测,提出了一种基于注意力机制的视频多尺度仪表检测算法。首先,利用基于空间注意力机制的特征提取网络,建模特征的长距离依赖,增强特征的表达能力;其次,提出了一种自适应特征选择模块(Adaptive Feature Selection Module, AFSM),对不同阶段的特征图进行权重调整,增强网络对多尺度目标的检测能力。在自建的仪表数据集上进行了实验。实验结果表明,相比较原来的Faster RCNN方法,所提出方法的检测精度提高了7.6%;与对比方法相比,检测精度也能达到95.4%。在对实际仪表监测视频的测试中,检测结果以及速度能够满足实际需要。所提方法通过改进特征提取网络和特征选择操作,增强了特征表达能力,有效降低了虚警,提升了网络对多尺度目标的检测性能。 相似文献
10.
11.
为降低光照、噪音、姿态等变化的影响,减少有效局部信息的损失,提出了使用图像的变换特征,及多尺度分块线性鉴别分析的算法.将图像进行多尺度划分,对划分后的每个子图像分别抽取其低频部分或奇异值,组合起来作为该图像的特征向量,进行线性鉴别分析.针对单一特征表示图像时的局限性,又提出了融合多尺度低频特征和多尺度奇异值特征进行人脸识别的方法.在ORL和Yale人脸库上的实验结果显示,所提出的算法识别精度明显提高,泛化能力较强. 相似文献
12.
将深度学习应用于行人重识别领域,嵌入多尺度注意力融合模块至神经网络中进行多尺度特征提取和表示,可有效提升注意力机制对深度学习网络的识别性能。提出了一种基于SE block的多尺度通道注意力融合模块,并结合ResNet50卷积神经网络提取特征;然后通过双向LSTM网络进一步提取特征序列上下文信息,在提高模型对图像重要特征的提取能力的同时,降低对图像冗余特征的关注度;最后使用级联难采样三元组损失函数和交叉熵损失函数共同训练网络模型,使样本能够在高维特征空间中实现聚类,进一步提升模型识别准确性。所提出算法在Market1501数据集和CUHK03数据集分别进行实验,并在同等条件下和其他注意力模块算法进行比较。为进一步验证各模块作用,对算法进行消融实验,以验证各模块的有效性,实验结果表明,所提出方法可有效应用于行人重识别 相似文献
13.
《天津大学学报(自然科学与工程技术版)》2020,(10)
细粒度图像分类是对某一类别下的图像子类进行精确划分.细粒度图像分类以其特征相似、姿态各异、背景干扰等特点,一直是计算机视觉和模式识别领域的研究热点和难点,具有重要的研究价值.细粒度图像分类的关键在于如何实现对图像判别性区域的精确提取,已有的基于神经网络算法在精细特征提取方面仍有不足.为解决这一问题,本文提出了一种多尺度反复注意力机制下的细粒度图像分类算法.考虑到高、低层级的特征分别具有丰富的语义、纹理信息,分别将注意力机制嵌入到不同尺度当中,以获取更加丰富的特征信息.此外,对输入特征图先后采取通道和空间注意,该过程可以看作是对特征矩阵的反复注意力(re-attention);最后以残差的方式,将注意力结果与原始输入特征相结合,将不同尺度特征图的注意结果拼接起来送入全连接层,以更加精确地提取显著性特征.在国际上公开的细粒度数据集(CUB-200-2011、FGVC Aircraft和Stanford Cars)上进行实验仿真,分类准确率分别达到86.16%、92.26%和93.40%;与只使用ResNet50结构相比,分别提高了1.66%、1.46%和1.10%;明显高于现有经典算法,也高于人类表现,验证了本文算法的有效性. 相似文献
14.
针对滚动轴承信号易受噪声干扰和智能诊断模型在不同工况下自适应性差的问题,提出了一种多尺度注意力卷积神经网络(MSACNN)模型.首先,将一维时间序列转化为二维图像作为模型的输入,在特征提取过程中,利用多尺度卷积结构拓宽网络的宽度并实现不同维度敏感特征的提取;然后,通过注意力机制对数据不同维度的特征赋予不同的权重,使模型... 相似文献
15.
在分析了传统的多尺度边缘融合方法存在的角点漏检和大尺度边缘信息丢失等问题的基础上,提出了一种新的基于相邻尺度间梯度方向的多尺度边缘融合方法.该方法充分利用相邻尺度间对应边缘点梯度方向相近这一特点,在没有增加其它辅助方法的前提下,只是通过改变多尺度边缘融合的依据和条件,即可改善边缘检测的最终效果,在保持算法简单性的同时,相比于传统方法有更好的弱边缘检出率、角点检出率、抗噪能力和更高的算法效率,仿真研究也证明了该融合方法的有效性. 相似文献
16.
基于卷积神经网络中的各个层次特征,提出了一种基于多尺度融合增强的服装图像解析方法。通过融合增强模块,在考虑全局信息的基础上对包含的语义信息和不同尺度特征进行有效融合。结果表明:在Fashion Clothing测试集上的平均F1分数达到60.57%,在LIP(Look Into Person)验证集上的平均交并比(mean intersection over union,MIoU)达到54.93%。该方法可以有效地提升服装图像解析精度。 相似文献
17.
给出了一种基于多尺度分解(易操纵金字塔分解)的多传感器图像融合算法.该算法把来自不同传感器的图像分解成不同尺度、不同方向(不止3个)的子带系列;使用基于相似性量测的规则融合各相应子带图像;再进行反变换,获得融合后的图像.实验结果表明该方法有较好的融合效果. 相似文献
18.
针对旋转机械故障诊断需要复杂特征提取过程,且对混有噪声的信号故障识别准确率偏低的问题,提出了一种基于注意力机制的多尺度端到端故障诊断方法。该方法在输入端引入随机丢弃抑制输入噪声,然后利用故障信号具有多个固有振动模态的特点,通过多尺度粗粒度层获取不同尺度下振动信号,进而利用全卷积网络实现多尺度特征提取,接着采用注意力机制将多尺度特征进行融合,最后利用多分类函数实现旋转机械故障诊断。分别在凯斯西储大学轴承数据集和变速箱数据集对该方法的有效性进行验证,结果表明:该方法的故障识别率高达100%;人为引入噪声信号的信噪比为-4dB时,在凯斯西储大学轴承数据集F上的故障识别正确率为84.77%,在齿轮箱数据集上的识别正确率为78.365%,识别正确率明显高于其他机器学习算法,证明了该方法具有较强的抗噪声干扰能力。 相似文献
19.
肝脏肿瘤分割旨在定位肝脏肿瘤区域,以辅助医生进行精准诊治。鉴于深度学习能自动学习医学图像中复杂的特征和结构,已成为肝脏肿瘤分割的主流方法之一。但肝脏肿瘤的大小、形态存在显著差异及边缘模糊等问题,限制了深度学习模型的分割性能。基于此,该文提出了一种融合多尺度特征和反向注意力机制的深度网络,并用于肝脏肿瘤的自动分割。具体地,基于U-Net模型的框架,分别设计了多尺度特征提取模块和基于深度监督的反向注意力模块,使得网络能根据分割目标的大小自适应地选择不同尺度的特征,并引导网络关注分割目标的边缘特征,进而提高网络的边缘分割能力。此外,设计了一种新的混合损失,以解决医学图像分割中的类别不平衡问题。最后,在MICCAI2017 LiTS挑战赛数据集的数值实验结果表明,所提方法的Dice系数、平均对称表面距离ASSD分别为76.12%和3.25 mm。 相似文献
20.