首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文主要研究自监督学习方法在视频目标分割中的应用。首先通过挖掘大规模无标注视频数据中的时间-空间关系,让神经网络作为特征编码器学习视频帧之间的相似性和连续性;然后通过记忆力机制训练网络,使其对当前帧和多个参考帧之间的关系进行建模;利用特征编码器学习到的特征对视频帧中的分割目标进行重建,进行下游的视频目标分割任务;最后,利用在线自适应模块对视频分割结果的错误进行修正。实验结果表明,本文的自监督方法在视频分割任务上的表现可以更加接近有监督方法的分割结果,采用记忆力机制和在线自适应模块可以大大提高视频目标分割的准确性。另外本文探究了数据有效性,当采用少量数据进行网络的自监督训练时,模型仍能取得较好的效果,意味着这个任务本身不需要大规模数据集中富含的复杂语义信息进行建模。  相似文献   

2.
基于对称差分算法的视频运动目标分割   总被引:5,自引:1,他引:5  
提出一种视频运动目标分割的改进算法, 该算法综合帧间差分算法及背景减算法获得的信息分割运动物体, 利用对称差分算法获得中间帧运动目标的轮廓信息, 以该轮廓的外接矩形为分界, 再对其外部进行动态背景更新处理, 并对其内部进行减背景运算. 实验结果表明, 该改进算法解决了帧间差分算法在运动物体缺乏足够表面纹理时, 易产生空洞和边缘缺失的问题, 具有计算速度快、 抗噪声能力强和分割效果好等优点.  相似文献   

3.
基于背景减与帧间差分结合的视频运动目标分割   总被引:1,自引:0,他引:1  
提出一种视频运动目标分割的改进算法,算法混合使用背景减算法和帧间差分算法,充分利用了两种典型算法的优点,并改进了其缺陷,解决了背景减算法的背景合理更新及帧间差分算法分割不完整问题.实验结果表明:该算法简单,速度快,易于硬件实现.  相似文献   

4.
赵杰  李絮  申通 《科学技术与工程》2022,22(22):9529-9536
在医学诊断中,血管疾病的研究与治疗仍是影响人类健康的主要因素。由于人体腹部血管复杂且构造因人而异,这就对图像分割的研究以及临床应用带来了极大困难。所以,通过图像处理和深度学习等方法准确清晰地获取病人腹部动脉及其分支血管,在临床和术前诊断中发挥了重要作用。本文主要对腹部血管的大小灰度、构造等基础医学知识进行学习,并深入研究了现有关于血管分割算法的优缺点。为解决深度卷积神经网络性能退化的问题,增强对目标信息的关注度并对不必要的特征信息进行抑制,提出一种基于Squeeze-and-Excitation Networks(简称SENet)注意力机制和深度残差网络的血管分割算法。使用12例腹部CT数据的评估结果显示,血管分割准确率可达90.48%,灵敏度、Dice、VOE、精确率分别为0.8995、0.8783、-0.1998、0.9104。因此,相比于传统方法,本实验所提方法具有更好的分割性能。  相似文献   

5.
6.
基于SUSAN算法的空间目标分割算法   总被引:1,自引:0,他引:1  
淡雪 《科学技术与工程》2011,11(11):2533-2536
随着航天科技的迅猛发展,空间背景下非合作目标的分割问题已经成为人们关注的新焦点。SUSAN算法是一种新兴的并行边界类分割算法,采用USAN原理,通过对模板覆盖像素的统计来提取目标的特征。针对空间目标图像的特点,提出了一种基于SUSAN算法的空间目标分割算法。利用图像中目标的边缘轮廓信息进行特征提取,实现了人造目标与背景的分离。该算法具有抗噪声能力好、特征定位准确、计算速度快、能够较好的保持图像的特征结构信息等特点,非常适用于航天图像的实时分割处理。  相似文献   

7.
任长安  陈利平 《科技信息》2012,(10):38-38,40
进化算法具有求解多目标优化问题的优点。本文首先对多目标优化问题进行了描述;然后讨论了目前几种主要的基于进化算法的多目标优化方法;最后介绍了基于目标空间分割的多目标进化算法的研究现状以及面临的问题。  相似文献   

8.
针对现有点云识别与分割算法因忽视点的位置特征和局部几何特征关系而导致难以捕获具有鉴别力的局部几何信息的问题,提出基于位置关系深度残差神经网络的三维点云识别与分割算法。将原始点云嵌入到高维空间并获取其高维特征;将点云的高维特征输入位置关系卷积实现局部邻域内当前点特征与位置几何特征的信息交流,并通过深度残差模块强化提取到的深层语义特征,分层重复以上步骤可逐步得到点云的高级上下文语义特征;通过全连接层与解码器,得到点云的识别与分割结果。实验结果表明,所提算法在ModelNet40点云分类数据集的识别精度达到了93.9%,在ShapeNet Part点云部件语义分割数据集的平均交并比达到了86.0%。所提算法能够提取三维点云的关键特征信息,具有较好的三维点云识别与分割能力。  相似文献   

9.
针对乳腺钼靶图像中肿块体积小且常被致密组织掩盖导致肿块分割精度较低的问题,提出一种基于复合加权损失函数的U型对称残差语义分割模型SRes-Unet:首先将含有残差结构的卷积模块嵌入U型网络架构中,提升模型整体的特征提取能力;其次,为了解决乳腺图像中因背景较大造成像素类别严重不平衡问题,利用复合型wBCE_DiceLos...  相似文献   

10.
点云语义分割技术是点云数据处理、三维场景理解与分析的有效手段之一。针对点云场景中局部形态各异,导致网络模型识别特征困难的问题,提出了邻域分布关系学习和混合尺度融合的方法,来增强局部感知能力。在卷积算子思想的基础上,根据邻域内所有点在三个坐标轴方向上的联合分布,学习其在高维特征层面的关系,从而捕获局部的整体相关性。此外,将包含小范围底层特征和大范围深层特征的邻域进行整体融合,有效保留不同层级的特征,并能够辅助网络修正相似或错误特征。在场景分割数据集S3DIS、ScanNet上进行实验验证,结果表明该方法在总体精度和类均精度的评价指标上均有提升,证明了其有效性。  相似文献   

11.
由于反卷积和上池化操作的存在,传统全卷积网络在解码阶段常常会丢失目标位置信息,降低图像的分割精度.针对这种情况,提出基于候选框网络对全卷积网络的输出进行缺陷位置微调的液晶面板缺陷分割算法.算法基于ResNet-101网络搭建全卷积主干网络,此构建2个分支,候选框生成网络和反卷积网络.在反卷积网络的输出层中使用多通道分类...  相似文献   

12.
针对图像语义分割中,存在细节信息丢失、分割类别边缘模糊而粗糙的问题,在编码解码结构的基础上,结合残差模块和注意力机制,设计一种残差注意力模块.通过注意力机制加强特征图通道之间的联系,以提升语义分割的细腻度.为提高模型对多尺度物体的识别能力,结合金字塔模型,设计一种金字塔上采样模块.利用编码过程中产生的不同尺度的特征图,...  相似文献   

13.
针对视频监控中的颜色特征检索,提出一种基于超像素分割的视频目标检索算法:该算法首先对视频帧序列按颜色及空间位置进行超像素分割,分割成若干个超像素区域;然后对每个超像素区域颜色值进行均值化处理;最后基于超像素区域进行颜色目标检索.为了验证算法的有效性,以监控拍摄的户外视频数据进行仿真实验,实验结果表明该算法能准确检索出所...  相似文献   

14.
基于帧间运动的视频分割   总被引:3,自引:0,他引:3  
视频分割是视频结构化和检索的重要技术 ,目前主要通过镜头分割得到。但许多应用需要对镜头根据摄像机运动作分割 ,现有技术不能满足应用实时需要。提出了一种对P帧运动向量稳健分析计算帧间运动并进行分割的方法。与传统光流法、M估计法比较 ,该算法只在压缩域上进行 ,不需迭代 ,具较强实时性。文中阐述了方法的基本思想、理论依据与实现 ,实验表明 :该方法具有很好的效果  相似文献   

15.
针对目前运动目标分割算法在复杂场景中适应性较差,时间复杂度较高等缺陷,提出一种新的运动目标分割算法,该算法通过自适应流形去噪实现刚性和非刚性对象的运动分割.首先,引入一种自适应核空间,如果两个特征轨迹属于同一刚性对象,则将其映射到相同点上;然后,采用一种基于自适应内核的嵌入式流形去噪算法,分割出刚性和非刚性对象的运动;最后,在多个数据集上与几种传统算法进行对比实验.实验结果表明,该算法在不同场景中均能取得更好的分割与跟踪效果.  相似文献   

16.
针对传统的光流法和背景差法所分割的运动目标存在区域丢失和内部孔洞的缺点,本文提出一种基于流场纹理表达及物体表面粗糙度测量的运动目标分割方法,即通过计算相邻帧间的光流将目标运动表达成流体的流动,并利用线积分卷积来表达流场纹理以展示更多的流场细节,从而将背景图像和运动目标分别表达成不同的纹理,最后通过针描法测量物体表面粗糙度的策略将运动目标和背景的纹理图像映射为表面粗糙度不同的物体,并通过分析直方图确定阈值分割运动目标。实验结果表明,本文提出的运动目标分割方法可自适应地选取阈值,并且可克服内部孔洞。  相似文献   

17.
医学图像分割是图像处理的重要环节,而细胞核分割结果是病理学家进行癌症分类和评级的重要依据,提高其分割的准确率一直是研究的热点。但由于同器官的不同细胞核存在形态可能不一样、细胞之间相互重叠、细胞边界不清楚等现象,导致细胞核图像难以准确分割。为提高相互接触和重叠细胞核分割的准确性和精确率,本研究提出一种新型的细胞核分割网络模型。该模型首先是对原始细胞图进行ZCA白化预处理,并基于经典的U-Net网络结构,通过U-Net和ResNet残差模块进行训练,使用Batch Normalization方法实现数据归一化处理,解决训练过程中梯度震荡问题。在MoNuSeg和ISBI2018Cell两个数据集上的实验结果表明,本研究所提出的模型的分割准确率较高,分割出的细胞没有出现细胞核大面积粘连的现象,细胞核轮廓更加清晰。本研究所提的分割网络基于经典的U-Net网络结构,通过构造ResNet残差模块实现对细胞核上下文特征的提取,同时在残差模块使用Batch Normalization使得梯度的传输更加便捷,减少了训练时间,而且在分割相互接触的细胞核时,具有精确定位和准确分割的能力,是一种有效的细胞核分割方法。  相似文献   

18.
准确分割核磁共振(magnetic resonance, MR)图像中的脑组织是临床诊断、手术计划和辅助治疗的关键步骤.深度学习在各种图像分割任务中表现出巨大潜力,现有模型没有一种有效方法汇总远距离像素间的关系.在网络解码阶段不能很好地融合不同层级的特征,导致无法准确定位.为克服上述问题,本文提出一种基于空间自注意力机制和深度特征重建的脑MR图像分割方法,构建了一个可以融合3维信息的2D模型,可快速准确对3D结构图像进行密集预测.在MRBrainS13数据集和IBSR数据集上进行充分地实验研究,结果表明本文方法在3D多模态和单模态脑MR图像分割方面优于目前的2D模型,运算和推理时间相比3D模型小很多,性能却十分接近.  相似文献   

19.
微波关联成像将量子强度关联成像的思想扩展到微波领域,不仅很好地解决了传统雷达无法进行高分辨凝视成像以及复杂的运动补偿等问题,还具有分辨率高、抗干扰能力强等特点,受到广泛关注.针对微波关联成像传统重构算法在低采样数条件下重构质量差问题,将残差网络和卷积神经网络应用于微波关联成像重构中,提出一种基于残差网络的微波关联成像方法,以雷达接收机回波数据作为网络的输入,依次通过训练好的特征提取网络和图像增强网络,进行高质量图像反演,并将文中算法与伪逆算法和压缩感知算法进行仿真对比分析.仿真结果表明:在相同采样率下,文中算法成像质量均高于其他算法.同时,在不牺牲图像质量的条件下,单张图像重构执行程序所耗时间约为0.06s,提高了图像重建的速度,对工程应用有重要意义.  相似文献   

20.
为解决当前视频运动目标检测中检测精度不高以及视频颜色失真对运动目标检测的干扰问题,该文提出了一种改进的视频运动目标检测方法.比较了多种颜色空间下的运动目标检测算法,通过对视频的RGB(Red Green Blue)颜色空间建模,根据实际情况,对不同的颜色分量赋予不同的权值,提高了该颜色空间的真实性.同时,创新性地将神经网络与颜色空间结合,通过自组织映射,实现了对视频流数据中的运动目标检测.大量的实验结果表明,该方法对提高视频运动目标检测准确率有着显著的效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号