首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
传统邻域分类器因良好的分类性能在分类问题中得到广泛应用.但数据规模和维度的不断增加,提高了邻域分类器的处理难度.为解决这一问题,该文基于Spark实现邻域决策错误率并行属性约简算法,删除数据中的冗余属性,减少数据间的不确定性.该算法能减少分类过程中数据计算时间,提高分类计算效率.邻域分类器在分类决策过程中采用的多数投票...  相似文献   

2.
基于邻域决策错误率的属性约简可以在删除冗余属性的同时,提升邻域分类器的留一验证分类精度.但这种约简方式并未充分考虑邻域分类结果在约简前后的差异.为解决这一问题,借助联合分布矩阵,提出了邻域决策一致性的概念,构建了邻域决策一致性与邻域分类精度的调和平均值,并将其作为约简求解的度量准则.在12个UCI数据集上的实验结果表明,所提出的新约简不仅能够有效地提升邻域分类器的决策一致性,而且在多数情况下能够进一步提高邻域分类器的留一验证分类精度.  相似文献   

3.
本文分析了矿山用地的特点,利用Dempster-Shafter证据理论用信任区间表示判决结果的特点,计算地类不确定性分布图,以CBV为最大划分像元归属类别原则对遥感图像上的矿山用地进行分类.实验结果表明,D-S证据理论用于矿山用地分类的精度高于最大似然方法的精度.  相似文献   

4.
基于D-S证据理论的纹理图像分类方法   总被引:2,自引:0,他引:2  
在阐述Dempster-Shafer证据理论的基础上,给出了基于Dempster-Shafer证据理论的多源信息融合的方法,并将Dempster-Shafer证据理论的信息融合技术应用于遥感图像纹理的分类.图像灰度均值特征和图像灰度共生矩阵的熵特征作为纹理图像的不同特征被提取,并构成该理论中的证据,利用一定的决策规则,选择融合证据作用下最大的假设.实验结果表明,基于Dempster-Shafer证据理论的多特征融合分类识别图像纹理的新方法是切实有效的和可行的,分类结果要优于仅仅利用单个特征进行分类的结果,能极大地提高图像纹理的识别分类能力.  相似文献   

5.
冗余属性过多是影响分类算法运行效率和准确率的重要因素。为了提高分类算法的运行效率和分类准确率,提出一种基于改进邻域粗糙集属性重要度的快速属性约简算法。首先,提出一种改进的KNN属性重要度;其次,利用改进过属性重要度的邻域粗糙集对原始数据的条件属性进行重要度排序,利用排序结果对原始数据进行属性约简,得到约简后的特征子集;最后,将约简后的特征子集输入分类模型进行分类预测。实验仿真结果表明,与改进前的基于邻域粗糙集的属性约简算法相比,所提出的方法具有较高预测精度和较快运行速度。  相似文献   

6.
基于Dempster-Shafer证据理论的虹膜图像分类方法   总被引:6,自引:0,他引:6  
为了提高虹膜图像的分类率,提出了一种基于证据理论的虹膜图像分类方法.该方法利用虹膜图像的纹理变化信息来提取虹膜灰度信号的比率特征,并结合证据理论实现了虹膜图像的决策分类,降低了不确定性因素对图像分类的影响,提高了分类率.在相同的实验条件下,对不同数量的虹膜图像进行了实验验证,结果表明,该方法在保持了分类稳定性的同时,其分类率比直方图交叉分类方法和直方图比率特征分类方法分别提高了6.96%和4.44%.  相似文献   

7.
将基于单隐层前馈神经网络(SLFN)提出的极速学习机(ELM)算法和邻域粗糙集理论进行结合,提出基于邻域粗糙集的极速学习机算法,采用邻域粗糙集对样本集进行属性约简,去掉冗余属性,利用ELM对约简后的数据集进行学习,并对数据样本进行预测。实验表明ELM算法相比具有更高的训练精度和测试精度。  相似文献   

8.
粗糙集理论为研究不精确数据的分析、推理,挖掘数据间的关系、发现潜在的知识提供了有效的工具。在数据挖掘技术中KNN算法是一个实现简单和分类准确性较高的方法,但是,当用于样本容量较大以及特征属性较多的类似医疗图像挖掘这样的领域时,其效率受到了很大的影响,找到一个删除最大冗余属性的方法成了解决这个问题的关键。将粗糙集理论与KNN算法结合起来,用粗糙集方法进行属性约简,有效地解决了KNN算法分类的这个缺点。  相似文献   

9.
数据挖掘分类问题的贪婪粗糙集约简算法   总被引:7,自引:0,他引:7  
基于贪婪算法和粗糙集方法,给出了一种处理数据挖掘分类问题的属性约简算法:贪婪粗糙集约简算法GRSR;在测试中得出的约简集为原始集的1/3,表明了它是一个有效的算法·其想法是:从初始约简集为空集开始,选择使分类质量最大的属性,将它加入约简集;再从余下的属性中选择使分类质量最大的属性并加入约简集,重复直至找到满意的约简集·  相似文献   

10.
使用Dempster-Shafer证据推理理论组合多个基因预测程序可以组合来自多个信息源的基因预测信息,多个基因预测程序组合后的预测效果明显好于单个基因预测程序的效果.  相似文献   

11.
传统的溶解气体分析方法和基于溶解气体分析数据的人工智能技术在变压器早期故障诊断中的应用由来已久。Dempster-Shafer证据理论已被应用于存在不确定性和冲突的各种面向人工智能的应用中。为了克服故障类型之间的冲突及提升变压器故障诊断正确率,该文提出了基于Dempster-Shafer证据理论和人工智能的变压器故障诊断方法。利用反向传播(Back propagation, BP)神经网络基于5种关键气体的浓度百分比检测变压器故障,并将其作为第一证据。利用模糊逻辑基于3种气体比率检测变压器故障,并将其作为第二证据。利用证据理论对BP神经网络和模糊逻辑检测结果进行集成分析,得到最终的诊断结果。研究结果表明证据理论和人工智能在变压器故障诊断中具有良好的应用前景。  相似文献   

12.
应用粗糙集理论的属性约简和规则约简方法对数据进行分类,并以可靠的数据对该方法进行了实验.结果表明,该方法复杂度低,且能有效提高分类效果.  相似文献   

13.
粗糙集理论是一种有效的属性约简方法,但不能直接处理实值数据。针对此问题,本文首先介绍了邻域和覆盖的概念,在此基础上构造了覆盖自约简和覆盖间约简(属性约简)算法;然后通过讨论邻域内各样本之间关系,提出了相斥元的定义,相斥元的存在可能导致决策正域计算错误,从而得到不符合数据表实际情况的属性依赖性,因此给出了分解相斥元的方法;最后在四个实值的基因表达数据库上进行了实验,结果表明该属性约简算法是有效的,并相对于现有其他算法具有较高的分类精度。  相似文献   

14.
针对传统的模糊评价系统存在评价冲突和主观偏差,造成网络安全态势预测出现精度和鲁棒性较低等问题,提出一种结合Dempster-Shafer(D-S)证据理论与循环神经网络的网络安全态势预测算法;首先以专家评价为基础构建网络安全的系统角色,由三角模糊函数获取专家评估指标;然后引入D-S证据理论进行评估指标的筛选、推理和校正,构建网络安全态势损失矩阵和可能性矩阵;最后,以损失矩阵和可能性矩阵为特征输入至循环神经网络中,获取网络安全态势预测结果。仿真实验结果表明,D-S证据理论有效地解决了评价冲突和主观偏差问题,循环神经网络使得网络安全态势预测结果的精度和鲁棒性都得到了提升。  相似文献   

15.
在分析单一、给定的邻域大小设定方法弊端的基础上,提出了基于属性数据标准差的阁值设定方法,并将蚁群优化算法引入到属性约简中,以属性重要度为启发信息,构造了基于邻域粗糙集和蚁群优化的属性约简算法,使用了4个UCI数据集进行约简.实验结果表明,提出的算法在约简的分类精度和约简中属性个数方面具有更好的性能.  相似文献   

16.
变精度邻域粗糙集相比于邻域粗糙集具有抗噪容错的能力,但由于重新定义了下近似,正域的划分不再严格,使得属性重要度的可信度降低,在精度改变的情况下无法优先选取最优的属性.针对这一问题,分析变精度邻域粗糙集的下近似,引入邻域内的正确分类率,定义属性质量度,提出一种基于正域的增量和平均正确分类率的增率相结合的属性度量方法.通过和现有的基于属性重要度的属性约简算法做比较,实验结果表明,改进后的属性度量方法对变精度有更好的适应性,在不同变精度阈值下能得到更优的约简结果.  相似文献   

17.
为了去除系统中的冗余属性,保持系统的分类能力,研究了连续值分布式数据的属性约简.给出了连续值分布式决策信息系统中邻域粗糙集的定义,讨论了分布式连续值决策信息系统中正域计算的可分解性.以保持分布式决策信息系统的正域不变为前提,探讨了分布式决策信息系统中属性的可约性,提出了分布式连续值决策信息系统的属性约简算法.为了验证该算法的有效性,在7份数据集上进行了3组实验.实验使用提出的算法对分布式数据进行属性约简,进而采用加权集成的方式进行分类测试.实验结果表明,该算法能够有效去除连续值分布式数据中的冗余属性,使得约简后的连续值分布式数据的集成分类能力与约简前相差不大.甚至更高.  相似文献   

18.
高效的属性约简算法是粗糙集理论应用于知识发现的基础,要在令人可接受的时间内获得约简的通常做法是基于启发式的约简方法。本文提出了决策表中决策属性集相对条件属性集的条件信息量的概念,同时用知识的条件信息量定义了属性的重要性,在此基础上,提出了一种新的基于信息量的属性约简算法,该算法的时间复杂度为(O|C|3|U|2),通过实例分析,表明该算法是有效的。  相似文献   

19.
结合粗糙集的属性约简和神经网络的分类机理,提出了一种混合算法. 首先应用粗糙集理论的属性约简作为预处理器,把冗余的属性从决策表中删去,然后运用神经网络进行分类. 这样可以大大降低向量维数,克服粗糙集对于决策表噪声比较敏感的缺点. 试验结果表明,与朴素贝叶斯、SVM、kNN传统分类方法相比,该方法在保持分类精度的基础上,分类速度有明显的提高,体现出较好的稳定性和容错性,尤其适用于特征向量多且难以分类的文本.  相似文献   

20.
粗糙集理论是一种新兴的数学工具,用于分析、处理不确定或不完整的复杂信息,适合于从大量复杂的数据中发现隐含的、潜在有用的规律。提出了一种基于粗糙集理论的决策规则提取方法,通过重要度分析和属性约简,找出影响决策属性的关键因素。通过值约简,得出决策规则。运用该方法对大学生自主学习风气与能力培养之间的关系进行研究,实例分析表明,这种新的方法具有实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号