首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
活化极化是由电极电化学反应造成的电压损失,对质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)的输出性能有重要影响。分析了PEMFC的工作原理和活化极化性能,建立了活化极化数学模型;同时针对6种不同阴极压力(30、40、50、60、70、80 kPa)下的PEMFC极化曲线进行了MATLAB仿真和实验测试,在此基础上得出了阴极压力对PEMFC活化极化电压、输出功率、开路电压以及电化学效率的影响规律。仿真和实验结果表明,增大阴极压力可明显减小活化极化,提高PEMFC输出电压;在电池工作温度为60℃,阳极压力为60 kPa时,随着阴极压力的增加,PEMFC输出电压呈现先增大后减小的变化趋势,当阴极压力为70 kPa时,PEMFC输出功率最大,同时电化学效率最高。  相似文献   

2.
质子交换膜燃料电池(PEMFC)的膜电极中包含多种传输过程,且传输过程与电化学反应过程在相互交错的区域内进行,本文建立了质子交换膜燃料电池的阴极数学模型,运用MATLAB和C语言编写了模拟程序,探讨了电极结构和电极制备工艺对电极电化学性能的影响.  相似文献   

3.
环境条件对质子交换膜燃料电池性能的影响   总被引:9,自引:0,他引:9  
研究了不同环境温度、湿度条件下小功率质子交换膜燃料电池(PEMFC)堆的性能,结果表明:环境温度、湿度对PEMFC堆的性能有很大影响,随着相对湿度的增加,PEMFC堆的最大输出功率显著提高;当相对湿度小于30%或者当环境温度降至10℃(2以下时,PEMPC的性能严重下降。  相似文献   

4.
基于有限元理论,建立质子交换膜燃料电池(PEMFC)性能的多物理场模型,利用UDF编程方法实现了ANSYS和FLUENT的联合仿真,考虑装配压力、接触电阻、电池工作温、湿度等参数,分析了各参数对燃料电池性能的影响,并优化参数使PEMFC性能提高13.4%,对今后PEMFC电化学性能优化具有一定的指导意义.  相似文献   

5.
质子交换膜燃料电池(PEMFC)长期运行过程中,其部件因损伤产生的杂质金属离子对燃料电池的电化学性能有重要影响。模拟PEMFC中Ca2+污染燃料电池工况,研究了Ca2+对PEMFC电化学性能的影响。实验结果表明:随着污染时间的增加,燃料电池性能逐渐衰减,当污染时间超过9 h,电池电压急剧降低;在高电流密度区(电流密度>400 mA/cm2),电压衰减最明显。在500 mA/cm2电流密度下恒电流放电2 h后,电压降低了41%。Ca2+的存在及其积累对质子交换膜燃料电池有明显的毒化作用。  相似文献   

6.
改善阳极水管理是碱性阴离子交换膜(AEM)燃料电池重要的研究课题.在质子交换膜燃料电池(PEMFC)阴极研究中,发现改变催化层内部结构能够有效改善阴极的水管理能力,然而目前关于AEM燃料电池催化层相关研究较少.本研究针对AEM燃料电池阳极水分布特点,利用Pt/C和PtRu/C催化剂在碱性条件下氢氧化反应(HOR)的活性差异,设计了双层催化剂结构.当活性较高的PtRu/C层靠近气体扩散层,活性较低Pt/C层靠近AEM时,双催化层形成与单一催化层水分布相反的活性梯度,能够有效改善水分布,在测试温度为30℃和100%相对湿度时,获得较高峰值功率密度88.1 m W/cm~2.研究成果为碱性膜燃料电池的阳极催化层结构设计提出一种新思路.  相似文献   

7.
自呼吸质子交换膜燃料电池(PEMFC)阴极侧湿度和温度耦合严重,且空气流量对湿度和温度影响不同,从而使得对电池输出电压的控制变得复杂.以氢气压力和提供阴极空气流量的风扇转速为影响因素,对相应的工作点集进行了正交试验研究.分析结果表明,风扇转速高于极值电压转速时,空气会带走更多的水分,从而使得质子交换膜逐渐干燥,阻抗增大,电池性能衰减;风扇转速低于极值电压转速时,空气流量带走的热量减少,使得阴极表面温度升高,阴极端相对湿度迅速减低,从而导致质子交换膜迅速干燥,电池性能衰减迅速.因此,每个工作点存在一个使电池电压最高的风扇转速值.  相似文献   

8.
为了探究在电流阶跃变化中工作温度、相对湿度和背压等运行参数对质子交换膜燃料电池(PEMFC)性能的影响,运用相对湿度和工作温度之间的耦合变化推导出了动态计算(DT)模型。该模型通过工作温度和相对湿度来阐述膜电极参数和PEMFC性能之间的特性关系,并分析在电流阶跃变化中这两种运行参数对质子交换膜(PEM)内水传递特性、输出电压和功率密度随时间变化的瞬态响应的差异。采用理论计算结合试验的方式,首先通过自定义函数(UDF)将DT模型导入到Fluent软件中进行计算并应用有限体积法进行求解;其次开展PEMFC动态负载性能测试,测量工作温度为50℃、60℃、70℃,背压为0、10 kPa,相对湿度为50%、75%、100%,同时改变电流负载(阶跃幅度为5 A)来实现PEMFC对电流阶跃动态响应的测试;最后通过极化曲线和I-P曲线对DT模型和试验数据进行比较分析。结果表明:实验数据与DT模型的仿真结果之间有很好的相关性;不对称加湿是影响功率密度的一个主导参数;阳极相对湿度决定了功率密度在发生阶跃电流后稳定运行的能力;PEM水含量与功率密度下冲幅度和响应时间有关。因此,工作温度为60℃、背压为10 kPa、阳极相对湿度为75%、阴极相对湿度为100%时,PEMFC的动态性能最佳。  相似文献   

9.
质子交换膜燃料电池运行参数的仿真优化   总被引:3,自引:0,他引:3  
为研究质子交换膜燃料电池(PEMFC)工作温度和反应气体工作压力变化对单体输出性能的影响,通过建立PEMFC单体的电化学模型及系统参数模型,利用Matlab软件,以Mark V型燃料电池发动机为实例,研究了工作温度和反应气体工作压力变化对电池单体输出性能的影响.结果表明:(1)工作温度每提高10K,单体的平均电压、平均功率将增加3%,在高温阶段增幅略有下降;(2)提高反应气体工作压力同样有利于提高电池的输出性能,但提高幅度受电池本身的限制,其工作压力一般不超过1MPa;(3)PEMFC还具有较好的瞬时过载能力.  相似文献   

10.
采用开路电压(OCV)工况研究了质子交换膜燃料电池(PEMFC)膜电极的耐久性,在OCV工况运行过程中,定期地通过极化曲线、电化学交流阻抗谱(EIS)、线性扫描伏安法(LSV)、短路电阻测试等在线测试方法对膜电极性能进行分析。当OCV工况运行结束后,采用扫描电镜(SEM)、离子色谱对质子交换膜(PEM)厚度和阴、阳极废水进行分析。结果表明,在OCV工况下运行115h后,PEMFC的开路电压由1.013V下降到0.794V,最大功率密度由538.8mW/cm~2下降到196mW/cm~2;在线电化学测试结果表明,欧姆电阻先减小后增大,氢气渗透通量逐渐增大,短路电阻逐渐减小;离子色谱测试结果表明,阴极和阳极废水中都存在氟离子;SEM表征发现,PEM厚度减小;在OCV工况下,PEM发生了衰减,从而导致PEMFC开路电压下降和性能衰减。研究结果表明PEM是影响膜电极耐久性的重要因素。  相似文献   

11.
质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)具有广泛的应用前景。为了提升流道构型对于质子交换膜燃料电池的综合性能,通过建立一种三维单相、等温的圆形交错迷宫式流道质子交换膜燃料电池模型,分析新型流道对质子交换膜燃料电池的输出性能、阴极氧和水浓度分布及阴极进气流速的影响。结果表明,圆形交错式流道相较于矩形交错式流道和蛇形流道电流密度提升25%和143%,也可以明显的改善流道内反应物和产物的分布和输运。阴极进气流速的增加可以提升电池的性能,但也会带来其他额外的损耗。可见,圆形交错式流道可以有效提升输出性能,改善氧和水的分布。  相似文献   

12.
将具有全局搜索能力的遗传算法应用于质子交换膜燃料电池(PEMFC)扩散电极的性能优化,通过对PEMFC单体建立二维稳态数值计算模型,在ISIGHT-FD软件平台上利用径向基函数(RBF)神经网络拟和模型,在相应的设计空间内生成RBF拟和曲面,调用多岛遗传算法(MIGA)对RBF拟和进行遗传搜索,得到了阴极扩散层厚度、孔隙率和渗透率的最优值,通过优化前后的氧气浓度和输出性能比较,表明这些参数可改善气体扩散层的传质性能.  相似文献   

13.
目的研究气体扩散层多孔介质渗透率对高温质子交换膜燃料电池(HTPEMFC)性能的影响,优化PEMFC的结构参数,提高电池的整体性能.方法采用多物理场直接耦合分析软件COMSOL Multiphysics,以直通道流场结构的PEMFC在工作电压为0.4V的条件下,对气体扩散层渗透率分别设定为1.18×10-12m2、1.18×10-11m2、1.18×10-10m2以及1.18×10-9m2的HT-PEMFC进行数值模拟和结果分析.结果模拟结果得出了流道内沿流道方向的阴极压力变化、电池电流密度以及阴极气态水浓度的分布情况.结论随着气体扩散层渗透率的增大,能有效降低电池阴极流道内的压降,进而改善电池内部传质、降低额外的功耗,提高电池电流密度以及增强阴极的排水能力.对HT-PEMFC结构的优化和设计具有重要的指导意义.  相似文献   

14.
利用极化曲线、电化学阻抗谱(EIS)、循环伏安(CV)及分区测试技术等表征手段,从不同角度对质子交换膜燃料电池(PEMFC)在低温(0℃)存储和启动工况下的性能衰减进行研究.结果表明:停机过程无气体吹扫的情况下,冻结/解冻循环导致PEMFC极化阻抗增加,电流密度衰减,催化剂电化学活性面积(ECSA)减少,以及分区电流密度分布均匀性下降,直接影响了PEMFC耐久性;基于优化的二次吹扫策略,可在更少吹扫气体用量下,增强吹扫除水效果;通过水浴加热辅助,在340s内成功实现单电池-30℃低温冷启动.  相似文献   

15.
目前,针对质子交换膜燃料电池(PEMFC)性能的数值模拟研究大多假设气体扩散层(GDL)的多孔介质孔隙率一致,但实际上GDL受双极板脊背压缩产生的变形会导致孔隙率的非一致性.文中针对装配压力引起的GDL变形及非一致孔隙率情况,基于有限元理论和计算流体力学软件,在FLUENT中导入力学分析得到非一致孔隙率的自定义函数(UDF).模拟结果表明:脊部下方GDL由于孔隙率的变化使得沿Y方向截面纵向气体的流速往双极板方向的递增;且孔隙率的非一致性导致脊部下方的气体浓度较流道下方降低、水含量增大,产生积水现象,这些变化将不利于燃料电池性能的保持.然后在验证函数准确性的同时探究了电池温度、湿度等参数随燃料电池电压的变化规律,并研究了燃料电池内部温度的变化.发现流道下方阴极侧电化学区域比阳极侧温度高,反映了实际燃料电池中阴极侧水堆积现象造成热的传输速度慢于阳极侧的实际情况.  相似文献   

16.
操作参数对PEMFC性能的影响   总被引:1,自引:0,他引:1  
通过实验研究三通道蛇形非对称流场的质子交换膜燃料电池(PEMFC)运行温度、气体加湿温度、空气流量、H2流量以及燃料电池工作压力等操作参数对PEMFC性能的影响。结果表明:燃料电池温度保持在333~343K,加湿温度与电池温度相同时,电池性能达到最佳状态;质子交换膜燃料电池中O2的还原反应是影响整个燃料电池放电性能的一个关键因素;工作压力为2.026×105Pa左右时电池的性能最佳。  相似文献   

17.
针对质子交换膜燃料电池在机械应力下的气-液两相流进行数学模拟研究,建立了一个二维质子交换膜燃料电池非等温两相流多物理场稳态模型. 该模型综合考虑了固体力学、电化学、传热传质以及气液两相流的物理因素,研究了质子交换膜燃料电池在机械应力作用下的两相流分布.计算结果显示:在机械应力作用下,燃料电池肋板下方的多孔介质应力明显大于流道下方的应力,且在肋板和流道交界处下方的气体扩散层会产生明显的应力集中现象;随着电流密度的增加,阴极相对湿度逐渐增加,但阳极相对湿度会减小;液态水仅在阴极产生且主要在肋板下方的多孔介质内形成,其在阴极的饱和度随电流密度的增加而不断增加.  相似文献   

18.
为研究质子交换膜燃料电池内水对电池输出性能的影响,搭建了一维燃料电池气液两相流模型,该模型考虑了氧气、氢气、水蒸气和液态水在气体流道、气体扩散层和催化层中的流动以及膜结合水在聚合物中的传输过程,同时考虑了电池内部水的相变。采用该模型分析了进气相对湿度对燃料电池输出性能的影响,结果表明:在小电流密度工况下,高相对湿度入口气体能够降低电池内阻提高输出电压;在进气相对湿度较高和大电流密度条件下,阳极比阴极更容易发生水淹。  相似文献   

19.
为了研究质子交换膜燃料电池变载过程中气体传输对动态响应的影响,建立了5流道蛇形流场质子交换膜燃料电池三维单相模型,并基于实际参数进行Fluent仿真.分析了运行参数(包括工作压力、进气增湿、化学计量比)对质子交换膜燃料电池稳态性能的影响,以及运行参数对质子交换膜燃料电池动态性能的影响.结果表明:工作压力高、阳极湿度大、化学计量比大能提高燃料电池稳态性能,小电流密度下阴极湿度大燃料电池稳态性能好,大电流密度下则相反;工作压力高、化学计量比大、阴极湿度大能提高燃料电池动态性能.  相似文献   

20.
催化剂的研究对于降低质子交换膜燃料电池(PEMFC)的成本,促进其商业化有极其重要的意义.主要介绍了阴极催化剂的发展情况,并将其分为铂系和非铂系催化剂两大类进行了介绍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号