共查询到16条相似文献,搜索用时 62 毫秒
1.
研究了基于BP神经网络、基于径向基神经网络等的故障诊断方法和原理,并利用小波包分解获得了滚动轴承振动信号的特征向量,进行了详细的故障诊断实验研究,通过实验,比较了基于松散型小波神经网络与紧致型小波神经网络的诊断结果。仿真结果表明,紧致型小波神经网络用于滚动轴承的故障诊断更为有效。 相似文献
2.
基于小波模糊神经网络的陀螺仪故障诊断技术 总被引:7,自引:0,他引:7
为了提高陀螺仪故障检测灵敏度,分析了陀螺漂移特性,指出随机漂移是影响陀螺仪精度的主要漂移误差,也是影响性能可靠性的主要因素.针对此,提出了一种小波模糊神经网络故障诊断模型.此模型运用串联方式将小波分析、模糊逻辑和神经网络融合在一起,充分发挥它们各自的优点,并对陀螺仪实测数据仿真.仿真结果表明,采用小波分析提取陀螺的常值漂移,简单有效;运用神经网络对陀螺的误差和故障建模,使故障诊断具有自适应、自学习的能力,并互增强了故障诊断的容错能力;将模糊逻辑用于判决中,使判决结果更加可靠. 相似文献
3.
基于小波分析的故障诊断 总被引:18,自引:0,他引:18
张定会 《上海理工大学学报》2000,22(2):137-140
对信号进行特征提取,是故障诊断的关键。突变信号往往对应着某类故障,如果能对突变信号进行有效识别,就能达到故障诊断的目的。对如何从混有噪声的振动信号中有效识别出突变信号,本文进行了一系列方法研究。 相似文献
4.
5.
动态电源电流(IDDT)对模拟电路故障诊断非常有效。通过分析被测电路的动态电源IDDT及其输出响应来识别电路的故障元件;用小波对被测信号进行多尺度分解,提取小波系数能量,经归一化后,作为特征向量输入到神经网络而实现故障诊断.实验仿真结果表明:该方法能正确实现故障定位且准确率高. 相似文献
6.
电力变压器油中溶解气体的色谱分析是变压器故障诊断的重要方法,通过该方法可以间接了解变压器的运行状态和内部潜在故障.人工神经网络已经成功地应用于电力变压器故障诊断,但学习样本数多和输入输出关系复杂性减慢了网络的收敛速度.为解决此问题,将用遗传算法改进的小波神经网络应用于电力变压器故障诊断,克服小波算法易于陷入局部极小、收敛速度慢等缺点. 相似文献
7.
基于小波包-Elman神经网络的电机轴承故障诊断 总被引:1,自引:0,他引:1
根据电机滚动轴承振动信号的频域变化特征,通过小波包分析将轴承振动信号分解在不同的频带之内,以频带能量作为识别故障的特征向量,应用容错性强、动态性能良好的Elman神经网络建立从特征向量到故障模式之间的映射,实现电机轴承故障分类。仿真结果表明,采用小波包和Elman神经网络相结合的方法能更加有效地实现电机轴承的故障诊断。 相似文献
8.
基于小波分析和神经网络的电机故障诊断方法研究 总被引:2,自引:0,他引:2
在电机故障诊断技术中,电机振动信号最能全面反映电机的运行状态.本文提出一种基于小波分析和神经网络的电机故障诊断方法,该方法采用小波时频分析技术对电机故障振动信号进行消噪滤波,通过小波包分解系数求取频带能量,根据各个频带能量的变化提取故障特征,应用BP神经网络进行故障识别,并采用Matlab仿真软件予以实现.结果表明,该方法不需要建立电机的故障诊断模型,能有效提高电机故障诊断的准确性. 相似文献
9.
基于信息融合的集成小波神经网络故障诊断 总被引:8,自引:1,他引:8
以非线性Morlet小波基作为激励函数,形成神经元,结合小波变换与神经网络各自的优点,建立了集小波分析与神经网络于一体的紧致型小波神经网络,并给出了具体的算法·基于信息融合技术的思想,从设备故障诊断的实际出发,建立了基于信息融合技术的集成小波神经网络故障诊断系统,即通过故障特征信息的有效组合,用各种子小波神经网络从不同侧面对设备故障进行初步诊断,然后对诊断结果进行决策融合·给出了系统的实现策略和子网络的组建原则·从诊断实例中可以看出,此诊断系统充分利用了各种特征信息,可以有效提高确诊率· 相似文献
10.
根据电机滚动轴承振动信号的频域变化特征,通过小波包分析将轴承振动信号分解在不同的频带之内,以频带能量作为识别故障的特征向量,应用容错性强、动态性能良好的Elman神经网络建立从特征向量到故障模式之间的映射,实现电机轴承故障分类。仿真结果表明,采用小波包和Elman神经网络相结合的方法能更加有效地实现电机轴承的故障诊断。 相似文献
11.
利用小波分析具有能量分布特征提取的特性和遗传算法优化BP算法的能力,提出了一种基于遗传算法、小波与神经网络的电梯故障诊断方法,并应用电梯故障数据作为实例进行了验证.遗传算法小波神经网络模型诊断速度快、鲁棒性好、故障诊断正确率高. 相似文献
12.
基于LabVIEW的小波分析在船舶柴油机故障诊断中的应用 总被引:1,自引:0,他引:1
王家宏 《浙江海洋学院学报(自然科学版)》2008,27(2)
测取船舶柴油机缸体振动信号。利用LabVIEW并结合小波分析对信号进行处理,提取故障特征。诊断结果与实际情况相符,说明了该方法的可行性及有效性。 相似文献
13.
针对常用的BP神经网络须已知结构,且学习算法训练速度慢的缺点,提出一种基于小波包分析与径向基神经网络(RBFNN)的模拟电路故障诊断方法。该方法首先利用小波包分解,归一化作为预处理提取模拟电路的故障特征向量,再将故障特征向量输入到RBF神经网络进行故障诊断。仿真结果表明本方法能够对模拟电路的故障进行有效诊断和定位。 相似文献
14.
15.
基于小波的神经网络在齿轮箱故障诊断中的应用研究(英文) 总被引:3,自引:0,他引:3
骆德汉 《中国科学技术大学学报》1998,(4)
研究基于小波分析的神经网络故障诊断方法根据齿轮驱动装置在工作时通常可能出现的故障类型,人为地在该装置上制造了类似的故障供诊断.并对实验结果进行了分析和讨论.实验表明,利用小波进行诊断信号的预处理,并将其形成向量供给神经网络进行故障诊断具有较好的效果. 相似文献
16.
基于小波分析的齿轮箱故障诊断 总被引:10,自引:1,他引:10
对测取的齿轮箱振动信号进行了离散小波变换,提取了齿轮箱螺栓拉断的故障信息。结果表明,小波变换或小波分析为判断、预防同类事故提供了一种有效的分析手段。 相似文献