共查询到16条相似文献,搜索用时 62 毫秒
1.
MGM(1,n)灰色模型及应用 总被引:38,自引:0,他引:38
提出多变量灰色模型(multi-variablegreymodel)—MGM(1,n)模型,它是单变量的GM(1,1)模型在多变量(n元变量)情况下的自然推广。通过对国有建筑施工企业就业人数和城镇集体建筑施工企业就业人数的建模和预测,表明MGM(1,n)模型的精度高于分别单独使用的GM(1,1)模型的精度. 相似文献
2.
城市用水量由于受经济,人口、生活水平等多种因素的影响,具有一定的灰色特征.多变量灰色MGM(1,n)模型作为GM(1,1)模型的扩展和补充,能够反映各变量问相互制约、相互促进的关系.遗传算法具有全局最优性和并行性特点,利用遗传算法对多变量MGM(1,n)模型的参数q进行优化,构建了基于遗传算法的MGM(1,n,q)模型.以1990~2003年大连市城市用水为例,对模型进行了验证,结果表明基于遗传算法的MGM(1,n,q)模型优于MGM(1.n)模型,MGM(1,n)模型要优于GM(1,1)模型. 相似文献
3.
针对传统MGM(1,m)模型和GM(1,N)模型均未能反映多个系统行为变量在多个因素变量影响下的模拟预测问题,本文根据两个模型各自特点对传统MGM(1,m)模型和GM(1,N)模型进行拓展,构建了灰色MGM(1,m,N)模型.研究该模型的建模机理及过程,并解决在多个因素变量的影响下多个系统行为变量的模拟预测问题.最后,将三种模型应用于雾霾的模拟预测中,结果表明,MGM(1,m,N)模型预测精度高于传统的MGM(1,m)模型和GM(1,N)模型,这主要是由于该模型能够较好地描述和反映多个系统行为变量受多个因素变量的影响. 相似文献
4.
基于遗传算法优化的GM(1,1)模型及效果检验 总被引:14,自引:1,他引:14
对变化较平稳的数据和变化幅度较大的非平稳数据两种序列建立的 GM(1 ,1 )模型 ,分别用加速遗传算法 (AGA)和最小二乘法 (LSM)对模型参数求解 .结果表明 ,对变化较平稳数据序列 ,两种参数求解法建立的预测模型的拟合优度和预测精度相差无几 ;对变化幅度较大的非平稳数据序列 ,基于 AGA的 GM(1 ,1 )模型的拟合优度和预测精度远高于基于 LSM的 GM(1 ,1 )模型的拟合优度和预测精度 . 相似文献
5.
优化的GM(1,1)模型及其在农村劳动力转移预测中的应用 总被引:1,自引:0,他引:1
GM(1,1)预测模型一直是灰色系统理论研究者关注的热点。在已有灰色理论的基础上,利用“最小二乘法”确定GM(1,1)白化函数的时间响应函数中的常数C,摈弃了传统GM(1,1)把原始序列中X(0)(1)作为初始条件的做法,从而构建了GM(1,1)的优化模型。最后,以河南省农村劳动力转移预测为例,进行两类预测模型的模拟精度比较,并进行了预测。表1,参7。 相似文献
6.
复杂系统的演化过程,n(n-1)律,自聚集 总被引:1,自引:2,他引:1
张嗣瀛 《复杂系统与复杂性科学》2005,2(3):84-90
研究一类复杂系统的演化过程,给出一个网络模型,由此导出f(n)=n(n-1),用以在某种程度上定性地描写演化过程中聚集与功能变化的规律。这里n表示agents的聚集数量。熟知的关系式1+1>2是n=2时的特例。当n为小数时,n的增减对系统整体功能的影响显著,此情况将称为“小n机制”。当n充分大时,系统的整体功能将有大跃升,并可用n2度量,称此为“n2效应”。一般情况下,n(n-1)描写聚集-相互作用-功能跃升的模式,用此模式可对不同领域的演化过程作某种解释。 相似文献
7.
基于级比优化的广义GM(1,1)预测模型 总被引:1,自引:1,他引:1
从GM(1,1)模型差分方程的角度推导出差分GM(1,1)模型及其还原时间响应函数,并与经典GM(1,1)模型(微分GM(1,1)模型)及其还原时间响应函数进行类比分析,得出两者具有同构性,其唯一差别为级比的结论.再由两者的同构性提出了一个广义GM(1,1)预测模型,新模型具有一般性,能有效概括差分方程与微分方程模型,极大提取了原始序列的灰信息;另一方面,与差分GM(1,1)模型及微分GM(1,1)模型的级比固定性不同,广义GM(1,1)模型的级比具有可优化性,通过非线性最小二乘优化方法可得出最优级比,进而从级比的角度优化了GM(1,1)模型,拓展了灰色系统理论.最后通过一个实例充分反映了新模型的上述优点. 相似文献
8.
GM(1,1)模型的背景值构造方法和应用(Ⅰ) 总被引:84,自引:1,他引:84
谭冠军 《系统工程理论与实践》2000,20(4):98-103
灰色 GM( 1 ,1 )模型对高增长指数序列拟合常常产生滞后误差 ,作者认为 GM( 1 ,1 )模型中背景值构造方法是影响其精度和适应性的关键因素 .从此角度出发 ,对背景值构造方法进行研究 ,重构了一个表达形式简洁、计算简单、适应性极强的背景值计算公式 .新的背景值计算公式的一个显著特点是它使 GM( 1 ,1 )模型具有对建模结果进行优化的能力 ,能获得最佳的拟合和预测精度 .它使 GM( 1 ,1 )模型同时适应于低增长指数序列和高增长指数序列建模 ,它是提高 GM( 1 ,1 )模型精度和适应性的关键技术 .算例结果的精度充分说明了它的有效性 . 相似文献
9.
基于遗传算法的改进的GM(1,1)模型IGM(1,1)直接建模 总被引:6,自引:0,他引:6
CM(1,1)模型一般以模型还原值与实际值平均相对误差检验模型的模拟精度。本文以模型还原值与实际值平均相对误差最小化为目标函数将CM(1,1)模型转化成一个不用进行灰微分方程参数辨识的优化模型,称之为改进的GM(1,1)模型,简称IGM(1,1)。IGM(1,1)避开了灰微分方程参数辨识时传统的优化无法求解,本文针对IGM(1,1)模型的直接建模。由于IGM(1,1)目标函数非连续,不可导,用传统的优化无法求解,本文针对IGM(1,1)模型的模拟特性设计了求解该优化模型的遗传算法并进行了算例验证,秋解结果表明了IGM(1,1)模型IGM(1,1)模型。 相似文献
10.
针对灰色GM(1,1)预测模型提高精度的问题, 提出了新的背景值优化公式代替传统的背景值优化公式, 再进行边值修正的方法. 该方法采用新的背景值优化公式求出紧邻均值生成序列, 并使用均方误差和最小准则, 针对原始序列和生成序列进行边值的修正. 通过对优化后的模型实证测算, 验证了修正后的模型在提高预测精度上的可行性和有效性. 相似文献
11.
GM(1,1)模型的改进及其适用范围 总被引:2,自引:0,他引:2
基于GM(1,1)模型的建模机理,本文同时改进了模型的背景值构造方法和预测值的计算公式,提出了新的改进模型.理论分析表明改进模型有意义的适用范围扩大为发展系数a∈(-4,2).打破了传统模型有意义的范围(-2,2);数据模拟实验的结果表明新的改进模型完全适用于对高增长序列建模,而且不管是短期还是长期预测都具有相当高的预测精度.这就显著扩大了GM(1,1)模型的适用范围. 相似文献
12.
灰色模型GM(1,n)的变量选择及拟合度分析 总被引:9,自引:0,他引:9
根据灰色关联度,探讨了GM(1, n )拟合度与变量选择的关系.应用实例,说明了变量选择在灰色建模过程中的必要性. 相似文献
13.
Jianxiang LI Yinghong MA 《系统科学与复杂性》2006,19(4):491-497
Let G be a graph, and a and b be integers with a ≤ b. A graph G is called a fraetional (a, b, n)-critical graph if after any n vertices of G are deleted the remaining subgraph has a fractional [a, b]-factor. In this paper two degree conditions for graphs to be fractional (a, b, n)-eritical graphs are presented, and the degree conditions are sharp in some sense. 相似文献
14.
在GM(1,1)模型预测中,缓冲算子能有效处理含有冲击扰动因素的原始数据,改善模型的预测效果. 本文在系统分析缓冲算子对GM(1,1)预测作用过程的基础上,提出了GM(1,1)模型的预测效应以及缓冲算子适用性的评价准则. 选用典型的6种弱化缓冲算子对河南粮食产量数据分长序列、宽间距序列和短序列三种情况进行了模拟计算分析. 确立了不同算子对GM(1,1)模型预测产生的效应及其适用范围,并选用具有类似特征的其他数据序列验证了研究结果的有效性. 相似文献
15.
根据矩阵理论推导非等间距GM(1,1)模型参数的矩阵形式,研究了压缩变换和初始点变化下非等间距GM(1,1)模型参数性质及其对模型精度的影响;在相对误差平方和最小的准则下,分别对初始条件和初始点进行优化,给出参数优化公式,发现两种优化方法是等价的;基于新信息优先原理,通过引入加权系数λ,综合考虑新旧信息变化规律,以加权求和的1-AGO序列作为初始条件,提出了全信息初始条件优化的非等间距GM(1,1)模型.最后,通过实例分析表明,本文提出的优化模型在拟合精度和预测精度上均有明显改善,表明优化的初始条件能充分提取新旧数据的有效信息,进一步提升建模效果. 相似文献
16.
多变量非等间距GM(1,m)模型及其应用 总被引:3,自引:0,他引:3
王丰效 《系统工程与电子技术》2007,29(3):388-390
对于多变量非等间距数据序列,建立了一类GM(1,m)预测模型。基于灰色模型的指数特性和积分定义,提出了构造多变量非等间距序列的GM(1,m)模型背景值的方法。该方法可以提高GM(1,m)模型的拟合精度和预测精度,拓广了灰色模型的应用范围。应用该方法,建立了中国农村青少年生长水平的灰色预测模型,结果理想可靠,有较好的实际意义。 相似文献