首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The focus of this review is the M-superfamily of Conus venom peptides. Disulfide rich peptides belonging to the M-superfamily have three loop regions and the cysteine arrangement: CC–C–C–CC, where the dashes represent loops one, two, and three, respectively. Characterization of M-superfamily peptides has demonstrated that diversity in cystine connectivity occurs between different branches of peptides even though the cysteine pattern remains consistent. This superfamily is subdivided into five branches, M-1 through M-5, based on the number of residues in the third loop region, between the fourth and fifth cysteine residues. M-superfamily peptides appear to be ubiquitous in Conus venom. They are largely unexplained in indigenous biological function, and they represent an active area of research within the scientific community.  相似文献   

2.
Summary The solid phase synthesis of three invertebrate vasopressin-oxytocin homologs: AVP-like factor, F1 1, ([Leu2, Thr4] AVT)2 isolated from subesophageal and thoracic ganglia ofLocusta migratoria 3, Arg-conopressin-S4. ([Ile2, Arg4] AVT), Lys-conopressin-G4 ([Phe2, Arg4] LVT), both isolated from the venom of fish-hunting marine snails of the genusConus and six of their analogues is reported. These analogues are: [Arg4] AVT, [Ile2] AVT, [Leu2] AVT, [Phe2, Arg4] AVT, [Arg4] LVT and [Ile2, Arg4] LVT. All peptides were tested for antidiuretic and vasopressor activities.  相似文献   

3.
4.
The DSCR1 (Adapt78) gene1 is transiently induced by stresses to temporarily protect cells against further potentially lethal challenges. However, chronic expression of the DSCR1 (Adapt78) gene has now been implicated in several pathological conditions including Alzheimer’s disease, Down syndrome and cardiac hypertrophy. Calcipressin 1 has been shown to function through direct binding and inhibition of the serine threonine protein phosphatase Calcineurin. Pharmacological inhibition of calcineurin, by the immunosuppressive drugs cyclosporin A and FK506, affects a wide variety of diseases. It is, therefore, likely that this endogenous calcineurin inhibitor, calcipressin 1, may also play a role in a variety of human diseases. 1Please note that the mammalian DSCR1 gene is also called Adapt78 or RCAN1, and its protein products have been named Calcipressin1, MCIP1 and RCAN1. A proposal to adopt a single gene name of RCAN1 and a protein name RCAN1 (for Regulator of Calcineurin) has been endorsed by the HUGO Gene Nomenclature Committee, but final approval must await agreement from a majority of researchers in the field. Received 2 March 2005; received after revision 27 May 2005; accepted 19 July 2005  相似文献   

5.
Protein tyrosine phosphatases (PTPs) have been generally recognised as key modulators of cell proliferation, differentiation, adhesion and motility. During signalling, several PTPs undergo two posttranslational modifications that greatly affect their enzymatic activity: tyrosine phosphorylation and cysteine oxidation. Although these modifications share their reversibility depending on the intracellular environment, their effects on enzymatic activity are opposite, tyrosine phosphorylation being correlated to enzyme activation and thiol oxidation to complete inactivation. Several papers have suggested that both these modifications occur in response to the same stimuli i.e. cell proliferation induced by numerous growth factors and cytokines. Conversely, the possibility that these two regulation mechanisms act simultaneously on PTPs has not been established and very few reports investigated this dual regulation of PTPs. To underline the relevance of the question, we discuss several possibilities: (i) that tyrosine phosphorylation and cysteine oxidation of PTPs may share the same target molecules but with different kinetics; (ii) that PTP phosphorylation and oxidation may take place on different subcellular pools of the same protein and (iii) that these two modifications, although having divergent effects on enzyme activity, cooperate in the integrated and coordinated function of PTPs during receptor tyrosine kinase signalling. We believe that our perspective will open new perspectives on an ancient problem – the apparent contradiction of opposing enzymatic regulation of many PTPs – thus clarifying their role as positive or negative transducers (or both) of many extracellular stimuli.Received 11 October 2004; received after revision 26 January 2005; accepted 10 February 2005 Available online 29 March 2005  相似文献   

6.
Myocardial infarction might result from the interactions of multiple genetic and environmental factors, none of which can cause disease solely by each of themselves. Although molecular biological studies revealed that a number of proteins are possibly involved in its pathogenesis, little, if any genetic findings have been reported so far. To reveal genetic backgrounds of myocardial infarction, we performed a large-scale, case-control association study using 92,788 gene-based single-nucleotide polymorphism (SNP) markers. We have identified functional SNPs within the lymphotoxin-α gene (LTA) located on chromosome 6p21 that conferred susceptibility to myocardial infarction. Furthermore, we could identify galectin-2 protein as a binding partner of LTA protein. The association study further revealed that a functional SNP in LGALS2 encoding galectin-2, which led to altered secretion of LTA, also indicated a risk of myocardial infarction. A combined strategy of genetic and molecularcellular biological approaches may be useful in clarifying pathogenesis of common diseases.Received 7 March 2005; received after revision 22 April 2005; accepted 25 April 2005  相似文献   

7.
The vascular endothelium plays a crucial role in regulating normal blood vessel physiology. The gene products responsible are commonly expressed exclusively, or preferentially, in this cell type. However, despite the importance of regulated gene expression in the vascular endothelium, relatively little is known about the mechanisms that restrict endothelial-specific gene expression to this cell type. While significant progress has been made towards understanding the regulation of endothelial genes through cis/trans paradigms, it has become apparent that additional mechanisms must also be operative. For example, chromatin-based mechanisms, including cell-specific DNA methylation patterns and post-translational histone modifications, have recently been demonstrated to play important roles in the cell-specific expression of endothelial nitric oxide synthase (eNOS). This review investigates the involvement of epigenetic regulatory mechanisms in vascular endothelial cell-specific gene expression using eNOS as a prototypical model, and will address the possible contributions of these pathways to diseases of the vasculature. Received 13 September 2005; received after revision 13 October 2005; accepted 19 October 2005  相似文献   

8.
Regulatory variation results from genetic changes with both cis and trans acting effects on gene expression. Here I describe the types of genetic variants that alter cis and trans regulation and discuss differences in the potential for cis and trans changes among different classes of genes. I argue that the molecular function of the protein encoded by each gene and how the gene is wired into the genomic regulatory network may influence its propensity for cis and trans regulatory changes.Received 15 February 2005; received after revision 12 April 2005; accepted 26 April 2005  相似文献   

9.
Small cationic antimicrobial peptides (SCAMPs) as effectors of animal innate immunity provide the first defense against infectious pathogens. This class of molecules exists widely in invertebrate hemolymph and vertebrate skin secretion, but animal venoms are emerging as a new rich resource. Scorpine is a unique scorpion venom defensin peptide that has an extended amino-terminal sequence similar to cecropins. From the African scorpion Opistophthalmus carinatus venom gland, we isolated and identified several cDNAs encoding four new homologs of scorpine (named opiscorpines 1–4). Importantly, we show for the first time the existence of multiple opiscorpine mRNAs with variable 3 untranslated regions (UTRs) in the venom gland, which may be generated by alternative usage of polyadenylation signals. The complete opiscorpine gene structure including its promoter region is determined by genomic DNA amplification. Two large introns were found to be located within the 5 UTR and at the boundary of the mature peptide-coding region. Such a gene structure is distinct, when compared with other scorpion venom peptide genes. However, a comparative promoter analysis revealed that both opiscorpine and scorpion venom neurotoxins share a similar promoter organization. Sequence analysis and structural modeling allow us to group the scorpines and scorpion long-chain K-channel toxins together into one family that shares a similar fold with two distinct domains. The N-terminal cecropin-like domain displaying a clear antimicrobial activity implies that the scorpine family represents a group of real naturally occurring hybrids. Based on the phylogenetic analysis, a possible cooperative interaction between the N and C domains is elucidated, which provides an evolutionary basis for the design of a new class of anti-infectious drugs.Received 5 April 2004; accepted 17 May 2004  相似文献   

10.
Reactive oxygen species, generated endogenously and induced as a toxic response, produce several dozen oxidized or modified bases and/or single-strand breaks in mammalian and other genomes. These lesions are predominantly repaired via the conserved base excision repair (BER) pathway. BER is initiated with excision of oxidized or modified bases by DNA glycosylases leading to formation of abasic (AP) site or strand break at the lesion site. Structural analysis by experimental and modeling approaches shows the presence of a disordered segment commonly localized at the N- or C-terminus as a characteristic signature of mammalian DNA glycosylases which is absent in their bacterial prototypes. Recent studies on unstructured regions in DNA metabolizing proteins have indicated their essential role in interaction with other proteins and target DNA recognition. In this review, we have discussed the unique presence of disordered segments in human DNA glycosylases, and AP endonuclease involved in the processing of glycosylase products, and their critical role in regulating repair functions. These disordered segments also include sites for posttranslational modifications and nuclear localization signal. The teleological basis for their structural flexibility is discussed.  相似文献   

11.
Research over the last 25 years on the cell adhesion molecule L1 has revealed its pivotal role in nervous system function. Mutations of the human L1CAM gene have been shown to cause neurodevelopmental disorders such as X-linked hydrocephalus, spastic paraplegia and mental retardation. Impaired L1 function has been also implicated in the aetiology of fetal alcohol spectrum disorders, defective enteric nervous system development and malformations of the renal system. Importantly, aberrant expression of L1 has emerged as a critical factor in the development of human carcinomas, where it enhances cell proliferation, motility and chemoresistance. This discovery promoted collaborative work between tumour biologists and neurobiologists, which has led to a substantial expansion of the basic knowledge about L1 function and regulation. Here we provide an overview of the pathological conditions caused by L1 malfunction. We further discuss how the available data on gene regulation, molecular interactions and posttranslational processing of L1 may contribute to a better understanding of associated neurological and cancerous diseases.  相似文献   

12.
dng1 is a Dictyostelium homologue of the mammalian tumor suppressor ING gene. DNG1 protein localizes in the nucleus, and has a highly conserved PHD finger domain found in chromatin-remodeling proteins. Both dng1 disruption and overexpression impaired cell proliferation. In dng1-null cells, the progression of differentiation was delayed in a cell-density-dependent manner, and many tiny aggregates were formed. Exogenously applied cAMP pulses reversed the inhibitory effect caused by dng1 disruption on the aggregation during early development, but formation of tiny aggregates was not restored. dng1-overexpressing cells acquired the ability to undergo chemotaxis to cAMP earlier and exhibited enhanced differentiation. These phenotypes were found to be coupled with altered expressions of early genes such as cAMP receptor 1 (car1) and contact site A (csA). Furthermore, disordered histone modifications were demonstrated in dng1-null cells. These results suggest a regulatory role of dng1 in the transition of cells from growth to differentiation.Received 29 December 2004; received after revision 24 May 2005; accepted 26 May 2005  相似文献   

13.
The importance of cerebral amyloid deposition in the mechanism of neurodegeneration is still debatable. Classic arguments are usually centered on amyloid β(Aβ) and its role in the neuronal loss characteristic of Alzheimer’s disease, the most common form of human cerebral amyloidosis. Two non-Aβ cerebral amyloidoses, familial British and Danish dementias (FBD and FDD), share many aspects of Alzheimer’s disease, including the presence of neurofibrillary tangles, parenchymal preamyloid and amyloid deposits, cerebral amyloid angiopathy and a variety of amyloid-associated proteins and inflammatory components. Both early-onset conditions are linked to specific mutations at or near the stop codon of the chromosome 13 gene BRI2 that cause generation of longer-than-normal protein products. Furin-like processing of these longer precursors releases two de novo-created peptides, ABri and ADan, which deposit as amyloid fibrils in FBD and FDD, respectively. Due to the similar pathology generated by completely unrelated amyloid subunits, FBD and FDD, collectively referred to as chromosome 13 dementias, constitute alternative models for studying the role of amyloid deposition in the mechanism of neuronal cell death.Received 4 March 2005; received after revision 24 April 2005; accepted 26 April 2005  相似文献   

14.
Nuclear distribution gene C homolog (NudC) is a highly conserved gene. It has been identified in different species from fungi to mammals. The high degree of conservation, in special in the nudC domain, suggests that they are genes with essential functions. Most of the identified genes in the family have been implicated in cell division through the regulation of cytoplasmic dynein. As for mammalian genes, human NUDC has been implicated in the migration and proliferation of tumor cells and has therefore been considered a possible therapeutic target. There is evidence suggesting that mammalian NudC is also implicated in the regulation of the inflammatory response and in thrombopoiesis. The presence of these other functions not related to the interaction with molecular motors agrees with that these genes and their products are larger in size than their microbial orthologous, indicating that they have evolved to convey additional features.  相似文献   

15.
Conclusion I have discussed in this article only the most active toxins, with the result that many interesting substances have been omitted, e.g. the toxins from bee and wasp venoms (apamin, melittin, etc.), of many amphibians (bufotoxins, etc.), ciguatoxins, and many more. Poisons are found in every phylum except birds. Shrews exemplify venomous mammals. One gets a good illustration of the number of poisonous animals by studying the monumental and impressive work byHalstead 106 which consequently excludes terrestrial animals. An interesting fact in this connection is that there are about 20,000 species of spiders, most of which are poisonous.A toxin ranking list has to be included in an article of this kind. The list is, of course, far from complete. Data on molecular weights, mouse lethal doses, etc. are lacking for many potent toxins, such as the dysentery toxin, a neurotoxin with a toxicity comparable to that of the botulinus toxins107, the toxins from the jelly fishChironex fleckeri 106.A comparison on molar basis gives a better notion of the toxicities. Curare has about 1/30 of the toxicity of the curarimimetic snake venom neurotoxins, clearly indicating that curare has a much lower affinity for the acetylcholine receptor.Toxic organisms have developed during millions of years more and more refined toxins, and this evolution has probably brought into existence toxins against every physiological function. Neurochemistry is to a great extent unexplored. Progress in this field will in the nearest future depend on specific toxins from various natural sources. Toxins from spiders, scorpions, snakes, frogs, and fishes are therefore not mere curiosities but valuable tools for research on the molecular mechanisms of neural function and synaptic transmission.  相似文献   

16.
Phage display was used to identify new components of the mammalian mitochondrial receptor complex using Tom20 as a binding partner. Two peptides were identified. One had partial identity (SMLTVMA) with a bacterial signal peptide from Toho-1, a periplasmic protein. The other had partial identity with a mitochondrial inner membrane glutamate carrier. The bacterial signal peptide could carry a protein into mitochondria both in vivo and in vitro. The first six residues of the sequence, SMLTVM, were necessary for import but the two adjacent arginine residues in the 30-amino-acid leader were not critical for import. The signal peptides of Escherichia coli β-lactamase and Bacillsus subtilis lipase could not carry proteins into mitochondria. Presumably, the Toho-1 leader can adopt a structure compatible for recognition by the import apparatus.Received 29 April 2005; received after revision 8 June 2005; accepted 17 June 2005  相似文献   

17.
Increasing evidence implies altered signaling through the neurotrophic receptor tyrosine kinase TrkB in promoting tumor formation and metastasis. TrkB, sometimes in conjunction with its primary ligand BDNF, is often overexpressed in a variety of human cancers, ranging from neuroblastomas to pancreatic ductal adenocarcinomas, in which it may allow tumor expansion and contribute to resistance to anti-tumor agents. In vitro, TrkB acts as a potent suppressor of anoikis (detachment-induced apoptosis), which is associated with the acquisition of an aggressive tumorigenic and metastatic phenotype in vivo. In view of its predicted contribution to tumorigenicity and metastasis in humans, TrkB corresponds to a potential drug target, and preclinical models have already been established. The encouraging results of pharmacological Trk inhibitors in tumor xenograft models suggest that TrkB inhibition may represent a promising novel anti-tumor therapeutic strategy. This hypothesis is currently being evaluated in clinical trials. Here, we will discuss the latest developments on TrkB in these contexts as well as highlight some critical questions that remain to be addressed for evaluating TrkB as a therapeutic target in cancer. Received 12 October 2005; received after revision 19 December 2005; accepted 11 January 2006  相似文献   

18.
Protein phosphorylation is a well-characterized biochemical process for reversible regulation of protein activity. Protein kinases and protein phosphatases are the key complementary players in this process, and through their coordinated activity cell homeostasis is tightly controlled. If these enzymes display aberrant activity, cells may undergo unrestrained growth, thus giving rise to complex diseases such as cancer. The technological platform gathered during the Human Genome Project recently allowed the systematic identifi cation of the genetic alterations present in the kinase (the kinome) and the phosphatase (the phosphatome) gene families. These studies suggest that most if not all human tumors carry genetic alterations in at least one phosphatase or kinase gene. Here we integrate the biochemical knowledge on the properties of these molecules with the information collected through their systematic genetic analysis in cancer. We also analyze why the molecular profi ling of the kinome and phosphatome in individual cancers is revolutionizing basic and clinical oncology.Received 13 May 2005; received after revision 30 May 2005; accepted 22 June 2005  相似文献   

19.
Because of possible variation in venom composition, an understanding of venomous snake systematics is of great importance for the optimization of antivenom treatment of snakebite patients. Intraspecific variation in the morphology of many venomous snakes complicates the definition and indentification of some species when allopatric populations are involved. Selectively neutral or near-neutral mtDNA sequences can reveal evolutionary relationships obscured by ecogenetically-caused morphological variation. We use comparative sequencing of the cytochrome oxidase subunit 1 gene to reveal the existence of a widespread, cryptic species of spiting cobra from southeast Asia. This species,Naja siamensis, is widely sympatric with other Asiatic cobra species. This may be of considerable medical significance, and calls for further research into venom composition in Asiatic cobras.  相似文献   

20.
CSTX-9 (68 residues, 7530.9 Da) is one of the most abundant toxic polypeptides in the venom of the wandering spider Cupiennius salei. The amino acid sequence was determined by Edman degradation using reduced and alkylated CSTX-9 and peptides generated by cleavages with endoproteinase Asp-N and trypsin, respectively. Sequence comparison with CSTX-1, the most abundant and the most toxic polypeptide in the crude spider venom, revealed a high degree of similarity (53% identity). By means of limited proteolysis with immobilised trypsin and RP-HPLC, the cystine-containing peptides of CSTX-9 were isolated and the disulphide bridges were assigned by amino acid analysis, Edman degradation and nanospray tandem mass spectrometry. The four disulphide bonds present in CSTX-9 are arranged in the following pattern: 1-4, 2-5, 3-8 and 6-7 (Cys6-Cys21, Cys13-Cys30, Cys20-Cys48, Cys32-Cys46). Sequence comparison of CSTX-1 with CSTX-9 clearly indicates the same disulphide bridge pattern, which is also found in other spider polypeptide toxins, e.g. agatoxins (ω-AGA-IVA, ω-AGA-IVB, μ-AGA-I and μ-AGA-VI) from Agelenopsis aperta, SNX-325 from Segestria florentina and curtatoxins (CT-I, CT-II and CT-III) from Hololena curta. CSTX-1/CSTX-9 belong to the family of ion channel toxins containing the inhibitor cystine knot structural motif. CSTX-9, lacking the lysine-rich C-terminal tail of CSTX-1, exhibits a ninefold lower toxicity to Drosophila melanogaster than CSTX-1. This is in accordance with previous observations of CSTX-2a and CSTX-2b, two truncated forms of CSTX-1 which, like CSTX-9, also lack the C-terminal lysine-rich tail. Received 23 July 2001; accepted 31 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号