首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915℃ when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for increasing the relative density of the composite.  相似文献   

2.
SPS方法制备铜/金刚石复合材料   总被引:1,自引:0,他引:1  
采用放电等离子烧结(SPS)方法制备出高体积分数的铜/金刚石复合材料,并对复合材料的致密度、热导率和热膨胀系数等进行了研究.结果表明,采用该方法制备的铜/金刚石复合材料微观组织均匀,致密度分布为94%~99%,最高热导率为305W.(m.K)-1,热膨胀系数与常见电子半导体材料相匹配,能够满足电子封装材料的要求.  相似文献   

3.
Al_(86)Ni_6Y_(4.5)Co_2La_(1.5) amorphous powders were synthesized by mechanical alloying for 200 h. Subsequent consolidation was performed via spark plasma sintering in the temperature range of 250 ℃ to 500 ℃ at the pressure of 500 MPa. The role of viscous flow on densification was investigated by studying the viscosity change of the amorphous phase at different consolidation temperatures. The decrease in viscosity at higher sintering temperatures resulted in better particle bonding and densification of consolidated samples. The formation of only FCC Al was observed in the consolidated samples at sintering temperatures ≤ 300 ℃ and the intermetallic phases formed at temperatures ≥ 400 ℃. The mechanical properties of the bulk samples were measured by Vickers microhardness and nanoindentation tests. The testing results showed that the average values of microhardness, nanohardness and elastic modulus of the sample consolidated at 500 ℃ were 3.06 ± 0.14 GPa,4.85 ± 1.14 GPa and 89.53 ± 9.25 GPa, respectively. The increase in hardness and elastic modulus of the higher temperature consolidated samples is attributed to the improvement in particle bonding, densification and distribution of various hard intermetallic phases in the amorphous matrix.  相似文献   

4.
WCoB based cermet is a potential hard alloy to replace WC-Co cermets with high hardness and corrosion resistance. WCoB based cermets with different Cr doping contents were fabricated by spark plasma sintering in liquid phase sintering stage. The densification behavior, phase composition, microstructure and mechanical properties of Cr doped WCoB cermets were investigated by XRD, EDS and SEM. Due to the lower density of Cr,the density of WCoB cermets decreased with the increasing of Cr doping content. The phase composition consisted of Cr doped WCoB, unreacted W, Co–Cr binary binder phase. When the doping content exceeded11.736 wt%, the Cr enrichment zones appeared, which was harmful to the TRS. The increasing of Cr doping content contributed to the increase of unreacted W phases content and the formation of pores. The maximum value of Vickers hardness was 1751 Hv0.5 at 9.356 wt% Cr doping content. The variation trend was explained by first principle calculation, which is consistent with Hv-Zhou hardness model.  相似文献   

5.
Sintering behavior of ZrB2 ceramic with nano-sized SiC dopant was studied. ZrB2-25 vol% nano-sized SiC was selected as the starting mixture to fabricate the composite. The manufacturing process was accomplished at 1800℃ for 5 min under 25 MPa via spark plasma sintering(SPS). The as-sintered sample reached a relative density of 99%. Besides the initial phases, namely ZrB2 and SiC, the high-resolution X-ray diffraction(HRXRD) was used to study the formation of an i...  相似文献   

6.
The mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering (SPS) were investigated.The results showed that the densities of the sintered composites gradually increased with increasing sintering temperature and that the highest microhardness and compressive strength were achieved in the specimen sintered at 450℃.CNTs dispersed uniformly in the AlSi10Mg matrix when the addition of CNTs was less than 1.5wt%.However,when the addition of CNTs exceeded 1.5wt%,the aggregation of CNTs was clearly observed.Moreover,the mechanical properties (including the densities,compressive strength,and microhardness) of the composites changed with CNT content and reached a maximum value when the CNT content was 1.5wt%.Meanwhile,the minimum average friction coefficient and wear rate of the CNT/AlSi10Mg composites were obtained with 1.0wt% CNTs.  相似文献   

7.
Fe_(76)Si_9B_(10)P_5/Zn_(0.5)Ni_(0.5)Fe_2O_4 amorphous composite with micro-cellular structure and high electrical resistivity was prepared by spark plasma sintering(SPS) at 487 °C. XRD and SEM results showed that the Fe_(76)Si_9B_(10)P_5 alloy powders remained the amorphous state and the composite was dense. A fusion zone at interface of Fe_(76)Si_9B_(10)P_5 cell body and Zn_(0.5)Ni_(0.5)Fe_2O_4 cell wall was observed by TEM, which also indicates the formation of local high temperature. The interface bonding based on the formation of local high temperature in SPS process was observed. It is believed that the tip effect of Zn_(0.5)Ni_(0.5)Fe_2O_4 nanoparticles promotes the local discharging and plasmas creation in the gaps, and the discharging energy forms an instantaneous local high temperature to complete the local sintering and the densification of Zn_(0.5)Ni_(0.5)Fe_2O_4 particles at a low nominal sinter temperature. Simultaneously, the local high temperature stimulates the adjacent gaps discharging, thus facilitate the continuous formation of new discharging path. Finally, sintering and densification of the amorphous composite is complete.  相似文献   

8.
以高能球磨法制备的93W-4.9Ni-2.1Fe复合粉末为原料,采用放电等离子烧结技术制备93W--4.9Ni-2.1Fe合金,研究了烧结温度对钨合金微观组织及性能的影响.采用扫描电镜对试样的断口进行观察,采用能量色散谱仪对合金的组元进行成分分析.结果表明:①烧结温度对合金的性能有显著的影响,在1 350℃时钨合金的抗拉强度达到一个极大值,为981 MPa,此时钨合金的相对密度和W晶粒的尺寸分别为98.9%和5μm;②当烧结温度达到1375℃时,合金中Ni元素开始挥发,随着温度的快速上升,合金中Ni元素的挥发不断加剧,当烧结温度升高至1425℃时合金中Ni元素已完全挥发;③合金的断裂方式随着烧结温度的升高发生显著的变化,当烧结温度升至1350℃时钨合金的断裂方式由W晶粒界面分离向W-W、W-黏结相界面断裂转变,而当烧结温度超过此温度时钨合金的断裂方式又转变为W晶粒的沿晶脆性断裂;④SPS快速烧结能够有效抑制W晶粒的长大,促进钨合金的细晶强化作用.  相似文献   

9.
A series of Ba8Ga16Si30 clathrate samples were prepared by arc melting, ball milling, acid washing, and spark plasma sintering (SPS). X-ray diffraction analysis revealed that the lattice of the Ba8Ga16Si30 samples expanded as the SPS temperature was increased from 400 to 750°C. Lattice contraction recurred when the SPS temperature was further increased in the range of 750–1000°C. This phenomenon can be explained by the variation of Ga content in the lattice. The thermoelectric figure of the merit ZT value of clathrates increased with the increase in SPS temperature and reached a maximum when the sample was subjected to SPS at 800°C. A further increase in SPS temperature did not contribute to the improvement of ZT. The variation of the lattice parameter a vs. SPS temperature T was similar to the variation ob-served in the ZT–T curve.  相似文献   

10.
Ti3SiC2 has the potential to replace graphite as reinforcing particles in Cu matrix composites for applications in brush,electrical contacts and electrode materials.In this paper the fabrication of Cu-Ti3SiC2 metal matrix composites prepared by warm compaction powder metallurgy forming and spark plasma sintering(SPS) was studied.The stability of Ti3SiC2 at different sintering temperatures was also studied.The present experimental results indicate that the reinforcing particles in Cu-Ti3SiC2 composites are not stable at and above 800℃.The decomposition of Ti3SiC2 will lead to the formation of TiC and/or other carbides and TiSi2.If purity is the major concern,the processing and servicing temperatures of the Cu-Ti3SiC2 composite should be limited to 750℃ or lower.The composites prepared by warm compaction forming and SPS sintering at 750℃ have lower density when compared with the composites prepared by SPS sintering at 950℃,but their electrical resistivity values are very close to each other and even lower.  相似文献   

11.
A series of novel steel–Ti(C,N) composites was fabricated by spark plasma sintering (SPS) and subsequent heat treatment. The hardness, indentation fracture resistance, and wear behaviour of the steel–Ti(C,N) composites were compared with those of the unreinforced samples, and their potentials were assessed by comparison with traditional cermet/hardmetal systems. The results showed that with the addition of 20wt% Ti(C,N), the wear rates of the newly examined composites reduced by a factor of about 2 to 4 and were comparable to those of cermets and hardmetals. The martensitic transformation of the steel matrix and the formation of in situ carbides induced by heat treatment enhanced the wear resistance. Although the presence of excessive in situ carbides improved the hardness, the low indentation fracture resistance (IFR) value resulted in brittle fracture, which in turn resulted in poor wear property. Moreover, the operative wear mechanisms were investigated. This study provides a practical and cost-effective approach to prepare steel–Ti(C,N) composites as potential wear-resistant materials.  相似文献   

12.
Spark plasma sintering was used to fabricate Al/diamond composites. The effect of sintering temperature on the microstructure and thermal conductivity (TC) of the composites was investigated with the combination of experimental results and theoretical analysis. The composite sintered at 550℃ shows high relative density and strong interfacial bonding, whereas the composites sintered at lower (520℃) and higher (580–600℃) temperatures indicate no interfacial bonding and poor interfacial bonding, respectively. High relative density and strong interfacial bonding can maximize the thermal conductivity of Al/diamond composites, and taking both effects of particle shape and inhomogeneous interfacial thermal conductance into consideration can give a fairly good prediction of composites’ thermal conduction properties.  相似文献   

13.
为满足现代电子工业日益增长的散热需求,急需研究和开发新型高导热陶瓷(玻璃)基复合材料,而改善复合材料中增强相与基体的界面结合状况是提高复合材料热导率的重要途径.本文在对金刚石和镀Cr金刚石进行镀Cu和控制氧化的基础上,利用放电等离子烧结方法制备了不同的金刚石增强玻璃基复合材料,并观察了其微观形貌和界面结合状况,测定了复合材料的热导率.实验结果表明:复合材料中金刚石颗粒均匀分布于玻璃基体中,Cu/金刚石界面和Cr/Cu界面分别是两种复合材料中结合最弱的界面;复合材料的热导率随着金刚石体积分数的增加而增加;金刚石/玻璃复合材料的热导率随着镀Cu层厚度的增加而降低,由于镀Cr层实现了与金刚石的化学结合以及Cr在Cu层中的扩散,镀Cr金刚石/玻璃复合材料的热导率随着镀Cu层厚度的增加而增加.当金刚石粒径为100μm、体积分数为70%及镀Cu层厚度为约1.59μm时,复合材料的热导率最高达到约91.0 W·m-1·K-1.  相似文献   

14.
弥散强化铜材料具有高强度和高导电性的特性,孔洞是影响导电率的重要因素.本文采用高速压制成形技术,对Al2 O3质量分数为0.9%的弥散强化铜粉压制成形,研究了压制速度对生坯的影响.当压制速度为9.4 m·s-1时得到密度为8.46 g·cm-3的生坯.研究了烧结温度对烧结所得Al2 O3弥散强化铜试样导电率的影响.当生坯密度相同时,烧结温度越高,所得试样的导电率也越高.断口与金相分析表明:烧结温度为950℃时,烧结不充分,颗粒边界以及孔洞多而明显,孔洞形状不规则;烧结温度为1080℃时,颗粒边界消失,孔洞圆化,韧窝出现,烧结坯的电导率为71.3%IACS.  相似文献   

15.
采用共沉淀-凝胶方法,通过低温煅烧和中温烧结,分别制备了Y2O3、Al2O3掺杂的ZrO2粉体和陶瓷;利用X射线衍射分析、扫描电镜和透射电镜等手段,对掺杂不同氧化物ZrO2相结构的稳定性及烧结性能进行了研究.结果表明:在ZrO2中掺杂摩尔分数5%的Y2O3或者Al2O3,870℃焙烧15min的粉体前者为立方相,后者为四方相;它们的粉体成型后经1400℃烧结4h,前者在室温下仍能保持立方相,后者却得到的是单斜相;在焙烧粉末中,Al3+固溶到ZrO2的晶格中,对ZrO2四方相晶格起到稳定作用,而在其陶瓷中,Al3+从ZrO2的晶格中扩散到晶界,对ZrO2不起稳定作用,只起促进烧结和细化晶粒的作用.  相似文献   

16.
Gangue existing states largely affect the high-temperature characteristics of iron ores. Using a micro-sintering method and scanning electron microscopy, the effects of gangue content, gangue type, and gangue size on the assimilation characteristics and fluidity of liquid phase of five different iron ores were analyzed in this study. Next, the mechanism based on the reaction between gangues and sintering materials was unraveled. The results show that, as the SiO2 levels increase in the iron ores, the lowest assimilation temperature (LAT) decreases, whereas the index of fluidity of liquid phase (IFL) increases. Below 1.5wt%, Al2O3 benefits the assimilation reaction, but higher concentrations proved detrimental. Larger quartz particles increase the SiO2 levels at the local reaction interface between the iron ore and CaO, thereby reducing the LAT. Quartz-gibbsite is more conductive to assimilation than kaolin. Quartz-gibbsite and kaolin gangues encourage the formation of liquid-phase low-Al2O3-SFCA with high IFL and high-Al2O3-SFCA with low IFL, respectively.  相似文献   

17.
采用纳米ZrO2(4Y)粉和纳米Al2O3粉为原料,对掺少量Al2O3的ZrO2(4Y)陶瓷进行无比压烧结研究。实验结果表明,掺适量的Al2O3可提高致密度,降低烧结温度。掺1.0wt%纳米Al2O3在1200℃煅烧2小时的陶瓷致密度为99.0%,烧结体晶粒长大略减缓。在纳米ZrO2(4Y)中掺入少量的纳米Al2O3可降低电导活化能,提高电导率。  相似文献   

18.
The effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics has been investigated. Silica was added to the BaTiO3-based powder prepared by the solid state method with 0.075mol%, 0.15mol%, and 0.3mol%, respectively. The SiO2-doped BaTiO3-based ceramic with high density and uniform grain size were obtained, which were sintered in reducing atmosphere. A scanning electron microscope, X-ray diffraction, and LCR meter were used to determine the microstructure as well as the dielectric properties. SiO2 can form a liquid phase belonging to the ternary system of BaO-TiO2-SiO2, leading to the formation of BaTiO3 ceramics with high density at a lower sintering temperature. The SiO2-doped BaTiO3-based ceramics can be sintered to a theoretical density higher than 95% at 1220℃ with a soaking time of 2 h. The dielectric constants of the sample with 0.15mol% SiO2 addition sintered at 1220℃ is about 9000. Doping with a small amount of silica can improve the sintering and dielectric properties of BaTiO3-based ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号