首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
本文讨论平面定常流函数Navier-Stokes方程组的有限元方法及其收敛性,并且证明: 只要有限元空间具有逼近性,紧致性且通过广义分片检验,则当Navier-Stokes方程组的 解是唯一时,有限元解是收敛的;特珠地,本文证明了:用收敛的薄板弯曲单元求解这一 方程也是收敛的;进一步,当雷诺数足够小,Navier-Stokes方程组的解的正则性满足薄 板弯曲时解的正则性要求时,有限元解的误差关于hr的量级与薄板弯曲的情形是一致的。  相似文献   

2.
将Newton、Oseen和Stokes3种有限元迭代算法用于求解三维定常Navier-Stokes方程,给出了这3种迭代算法的误差估计,并比较了它们的优劣。对于方腔驱动流问题,给出了每种算法所能计算的最大雷诺数。  相似文献   

3.
Navier-Stokes方程组是描述不可压缩的粘性流体运动的数学模型,具有很强的应用背景.20世纪80年代有学者开始研究Navier-Stokes方程组的最优控制问题,并且取得了一系列丰硕的研究成果.文章旨在对Navier-Stokes方程组的最优控制方面的研究现状进行介绍,并提出了进一步的研究方向.  相似文献   

4.
Navier-Stokes(N-S)方程组是描述流体运动的基本方程组,其数值模拟对我国的国防建设与工业设计非常重要。在高性能并行机和并行计算技术飞速发展的今天,其并行数值计算方法的研究是当前计算流体力学领域最前沿的热门课题之一。基于局部与并行有限元离散技巧和区域分解方法,给出了数值求解定常不可压N-S方程的若干高效并行算法,这些算法实现简单,稍加修改现有的串行程序即可实现并行计算,通信需求少,能快速有效地模拟复杂的流体流动行为。我们给出了一些理论结果和数值算例,验证这些算法的有效性。  相似文献   

5.
本文针对定常Navier-Stokes方程给出了三种梯度-散度稳定化Taylor-Hood元.为了克服Taylor-Hood混合有限元离散迭代解不满足质量守恒律的问题,本文在已有的三种迭代格式上增加了梯度-散度稳定项,以便在得到连续离散速度和压力解的同时使离散速度解满足质量守恒律.在强唯一性条件下,本文证明了这三种梯度...  相似文献   

6.
Navier-Stokes方程是流体力学的基本方程,其并行数值求解方法是当前计算数学和计算流体力学领域的最前沿课题之一。综述了Navier-Stokes方程有限元并行计算方法的研究现状。将已有的方法进行分类,分别介绍了其基本思想,评述了各种有限元并行计算方法的优缺点,讨论了有限元并行计算方法所面临的问题,并对其发展趋势进行了展望。  相似文献   

7.
在Dirichlet-Neumann混合边界条件下研究量子Navier-Stokes方程组的热平衡状态.首先利用截断方法把问题正则化,然后利用Leray-Schauder不动点定理证明正则化问题解的存在性,最后通过寻找粒子浓度的一个正则性估计证明正则化问题的解也是原问题的解,另外证明问题解的唯一性。  相似文献   

8.
研究发生在半导体器件中的一种耗散的量子流体动力学模型,即一维等温量子Navier-Stokes方程组.在热平衡状态下,先利用指数变换法将问题转化成一个四阶椭圆方程,然后利用Leray-Schauder不动点定理得到了模型古典解的存在性,最后在某些条件下证明了解的唯一性.  相似文献   

9.
Navier-Stokes方程是流体力学中一类重要的数学物理方程,其相关控制方程是非线性的.设计二维Navier-Stokes方程的有限元格式,并实现该算法.对于非线性项采用Newton迭代格式.数值结果表明,该方法不仅具有稳定性,而且具有较好的收敛性.  相似文献   

10.
该文研究了当x∈R时,有变外力作用的粘性依赖于密度的一维可压缩Navier-Stokes方程组的柯西问题.为了克服无限区间和变外力给研究带来的困难,我们做了一些新的先验估计,得到了整体弱解的存在性和唯一性,并且研究了解的渐近性态,证明了当t→+∞时,解趋于平衡状态.  相似文献   

11.
考虑于1968年作为粘性不可压缩流的一个数学模型提出的修正的Navier-Stokes方程的定常解的存在性,唯一性和吸引性.定常的修正的Navier-Stokes方程是满足一定的单调性条件的拟线性椭圆方程组.利用逼近建立了一个一般的存在性定理,进而看到,如果或者椭圆性常数足够大,或者具适当大的单调性参数,或者外力相当小,则有唯一的定常解,最后,我们在类似(仅仅是类似!)于上述的条件下证明了所有的定常解的集合是极小的紧的不变的可吸引相空间中任何有界集的吸引子.  相似文献   

12.
Douglas提出的非协调元具有很好的稳定性,在矩形元上对速度增加了协调泡函数并对压力取间断分片常数.回顾了运用非协调矩形元方法求解定常N-S方程解的稳定性和误差估计;证明了逼近解的存在唯一并给出了数值实验.  相似文献   

13.
Navier-Stiokes方程简单分歧点的扩充系统   总被引:1,自引:0,他引:1  
构造了定常Navier-Stokes方程简单分歧点的扩充系统,把简单分歧点转化为扩充系统的正则点,从而此类分歧数值计算问题提供了有效的方法。  相似文献   

14.
考虑定常Stokes方程的一种带惩罚项的变分形式,用局部非协调有限元求解,从而解决了这种变分形式在三维空间上不能应用于光滑区域的问题,并且得到了在本文所定义的范数意义下的最优误差估计。  相似文献   

15.
本文研究了一类非线性拟双曲型方程的半离散化和全离散化的有限元逼近,对这两种逼近格式的收敛性和稳定性理论作了分析,得到了最佳的L~2模和H~1模有限元误差估计。  相似文献   

16.
研究粘弹性方程有限元近似解和真解Ritz-Sobolev投影之间的超收敛结果,当有限元空间指数k≥2时,得到了二者之间的L(p2≤p≤∞)模超收敛一阶,W1(,p2≤p<∞)模超收敛二阶,W1,∞模超收敛几乎二阶结果。  相似文献   

17.
证明了定常非对称流动方程变分格式解的存在唯一性,并建立了其G/L-S稳定化有限元格式,证明了有限元离散解对任意有限元空间组合是稳定的,并给出有限元解的收敛性和误差估计.  相似文献   

18.
针对定常的Navier-Stokes方程,本文给出并分析了基于速度场L~2投影的新型稳定化有限元方法.速度-压力逼近采用了P_1/P_1元.为了克服等阶元不满足inf-sup条件的问题,本文增加了压力投影稳定项.基于速度场L~2投影的稳定化方法,本文增强了L~2范数的稳定性.该稳定化格式的优点是所有的计算都在同一套网格上执行,不需要嵌套网格且只涉及速度场投影而不需要求解速度梯度投影.在连续的Navier-Stokes方程存在唯一一支非奇解的情况下,本文证明了该离散格式是稳定的.此外,本文还得出了离散解的误差估计.数值实验证实该方法是有效的.  相似文献   

19.
有限元法是变分原理和剖分插值两类方法的综合,本文介绍有限元法求在边值条件u(0)=u′χ(ι)=0下的极小值问题.与其他方法相比较,本方法具有更加逼近于真解的特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号