共查询到15条相似文献,搜索用时 109 毫秒
1.
Hiroshi Niki等讨论在预条件PS=I S下加速Gauss-Seidel迭代法的收敛性,该文讨论在预条件PC=(I C)下解线性方程组Ax=b,通过预条件提高Jacobi型迭代方法的收敛性,进而使两参并行Jacobi型方法(简称2PPJ方法)的收敛性得到加速,最后给出一个例子. 相似文献
2.
Hiroshi Niki等讨论在预条件Ps=I+S下加速Gauss—Seidel迭代法的收敛性,本文讨论在预条件含参数的情况下解线性方程组Ax=b,通过预条件提高Jacobi型方法的收敛性。进而使两参并行Jacobi型方法(简称2PPJ方法)的收敛性得到加速。最后给出一个数值例子。 相似文献
3.
在预条件含参数的情况下解线性方程组AX=b.当A为严格对角占优的L-矩阵时,通过预条件提高Jacobi型方法的收敛性,进而加速两参数并行Jacobi型方法的收敛性. 相似文献
4.
在预条件含参数的情况下解线性方程组AX=b.当A为严格对角占优的L-矩阵时,通过预条件提高Jacobi型方法的收敛性,进而加速两参数并行Jacobi型方法的收敛性. 相似文献
5.
预条件双参数并行Jacobi型方法及外插迭代收敛性和Jacobi迭代收敛性的比较 总被引:4,自引:1,他引:4
讨论了在矩阵条件下预条件方法在双参数并行Jacobi方法上的加速作用,以及参数在迭代上的作用,比较了外插迭代矩阵和Jacobi迭代矩阵谱半径之间关系。 相似文献
6.
目的加速SSOR迭代法的收敛性。方法运用矩阵分裂理论及比较定理进行证明。结果得到矩阵为严格对角占优L-矩阵时,预条件后能够加速SSOR迭代法的收敛速度。结论对于求解差分方法、有限元方法及科学计算中产生的线性方程组提供理论支持。 相似文献
7.
考虑将预条件(I+α)应用于AOR迭代法和2PPJ迭代法,得到这两种预条件迭代法的收敛性定理,并从理论上证明了它们较原方法提高了迭代的收敛速度. 相似文献
8.
张志华 《四川大学学报(自然科学版)》1996,33(3):335-337
双参数并行Jacobi型迭代法的收敛性张志华(数学系)求线性方程组的解始终是一个重要课题.近年来,已取得许多成果.1983年Missirlis提出了并行Jacobi型方法[1],胡家赣1992年将这个方法推广到两参数的情形,称之为双参数并行Jacob... 相似文献
9.
10.
预条件AOR和2PPJ迭代法收敛性的注记 总被引:2,自引:0,他引:2
分析了系数矩阵是$\emph{\textbf{M}}$-矩阵时预条件AOR和2PPJ迭代法的收敛性, 指出了已有结果的一些错误并给出了正确的收敛定理. 同时, 利用$\emph{\textbf{H}}$-分裂理论, 讨论了系数矩阵是$\emph{\textbf{H}}$-矩阵时预条件AOR的收敛性并给出了参数的收敛区间. 相似文献
11.
两类预条件后迭代法收敛性的讨论 总被引:2,自引:0,他引:2
雷刚 《东北师大学报(自然科学版)》2009,41(3)
运用矩阵分析及矩阵分裂理论,讨论了两类预条件后AOR迭代法中参数的最优选取.在取得最优参数的情况下,对两类预条件加速迭代方法的收敛速度进行了比较,得到了预条件P1=(I+S)优于预条件P2=(I+S⌒)的结论,并且给出一个实例. 相似文献
12.
雷刚 《西安工程科技学院学报》2013,(5):671-674
在以往预处理的基础上,结合矩阵分析及分裂理论,用迭代法求解线性方程组Ax=b,给出预处理后松弛迭代法的2种不同分裂形式,从理论和数值两个方面说明这种分裂形式的收敛效果优于常见的预处理方法. 相似文献
13.
预处理后新分裂下的SOR迭代法收敛性讨论 总被引:2,自引:0,他引:2
在求解大型线性方程组Ax=b时,常采用预处理方法求解,也就是对方程组两边同时乘以非奇异矩阵P再求解.运用矩阵分裂理论及比较定理,给出一种预处理后改进的SOR迭代方法,与现有的方法进行比较,证明这种方法不仅能加速SOR迭代法的收敛性,而且优于一般的预处理方法.最后给出一个数值例子. 相似文献
14.
雷刚 《宝鸡文理学院学报(自然科学版)》2011,31(3):13-17,21
目的在预条件后运用SOR迭代法求解大型线性方程组Ax=b,以加快迭代法的收敛性。方法结合矩阵分裂理论及比较定理,引入参数α,给出预条件后一种改进的矩阵分裂形式,使矩阵分裂更加一般化。结果与结论说明这种方法不仅能加速SOR迭代法的收敛性,而且优于常见的SOR方法,并且给出参数的最优选取,为算法设计提供帮助。 相似文献
15.
针对Gauss-Seidel迭代法求解大型线性方程组Ax=b时,结合矩阵分裂理论及比较定理,给方程两边同时左乘非奇异矩阵P(也称为预条件矩阵),对新的系数矩阵PA进行矩阵分裂时,引入参数α,以使矩阵分裂更加一般化,说明这种方法不仅能加速Gauss-Seidel迭代法的收敛,而且优于一般的预条件方法.最后给出一个数值例子. 相似文献