首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 214 毫秒
1.
用HVS-1000显微硬度测试仪、X-350A型X射线应力测定仪,以2.5 kW SM2000SM快轴流CO2激光器对0.6 mm厚的TA2板料进行扫描,按照正交试验理论安排成形工艺参数,研究了TA2板料弯曲成形时主要工艺参数对弯曲角度的影响,以及试样表面残余应力的分布和试样断面上的显微硬度变化。结果表明:正交试验中的4个工艺参数的作用是不同的,按其变化对弯曲变形量影响的大小排序,依次是扫描次数、光斑直径、激光束功率、扫描速度;成形参数对试样表面的残余应力分布也存在一定的影响;试样变形区断面上的显微硬度变化呈现出一定的规律。  相似文献   

2.
采用单因素条件变量分析方法,研究选区激光熔化(SLM)增材制造过程中激光功率和扫描速度对马氏体时效钢成形件表面质量、相对致密度和硬度的影响规律.结果表明,随着激光扫描速度增大,试件表面熔道球化效应增强,内部缺陷增多,试件相对致密度和硬度逐渐降低;随着激光功率增大,试件表面熔道重熔区域变大,但试件的相对致密度和硬度无明显变化.本研究可为马氏体时效钢选区激光熔化工艺参数的合理选择提供参考.  相似文献   

3.
为了研究金属薄板等离子电弧加热弯曲成形的规律及机理,采用等离子电孤沿直线来回对1Cr18Ni9Ti和Q235薄板进行加热弯曲成形实验.结果表明,随着等离子电弧在薄板上扫描次数的增加,其弯曲角度近似呈线性增大;在一定范围内热输入越大(如减小扫描速度、减小电弧长度、增加电弧电流等),板材厚度越小,薄板的弯曲角度越大;在较低的热输入下等离子电弧加热弯曲成形使晶粒细化,有利于改善薄板受热区域显微组织的机械性能;成形过程中存在残余应变强化,受热区域硬度提高;等离子电弧加热弯曲成形还可以降低机械加工引起的残余应力,有效减少回弹.  相似文献   

4.
5A06铝合金具有良好的塑性、断裂韧性、焊接性能及耐腐蚀性,是航天器舱体的首选材料。为探索其在激光诱导下的成形特性,通过试验研究了激光功率、扫描速度、光斑直径、扫描次数等工艺参数对板材弯曲角度的影响规律;并通过比较扫描前后板材的金相组织、硬度、强度等性能的变化,揭示了激光扫描对材料性能的影响情况。试验结果表明:激光诱导热成形可以有效地使5A06铝合金板材发生弯曲,通过合理选择工艺参数可以实现板材任意角度的弯曲;板材经激光扫描后,其晶粒细化、硬度提高但强度变化不大。  相似文献   

5.
采用选区激光熔化(SLM)技术制备了316L不锈钢试样,通过金相观察、硬度试验和拉伸试验,研究了激光功率和扫描速度对试样组织性能的影响.结果表明:316L不锈钢SLM成型件抗拉强度、屈服强度、硬度优于普通成型316L不锈钢,但其塑性稍差;成型件孔隙缺陷的出现是影响其力学性能的关键;随着扫描速度的增加或激光功率的减小,成型件形成孔隙缺陷的几率增加,导致其力学性能呈下降趋势,当激光功率较低且扫描速度较大时,出现粉末未熔化现象,导致其力学性能急剧下降;激光功率为275 W,扫描速度为0.7 m/s时成型件显微组织最优,抗拉强度、屈服强度、断后伸长率及硬度值最佳.  相似文献   

6.
利用超声表面纳米化技术(ultrasonic nanocrystal surface modification,UNSM),采用4组静态载荷(70 N,90 N,110 N,130 N)分别在304不锈钢表面获得强塑形变形层,利用光学显微镜、扫描电子显微镜、XRD等研究了由表层到基体的显微特征、残余应力、硬度分布及相组成等.利用有限元方法探讨弹性模量及泊松比同时由表层到基体梯度增加时,弯曲试件内的正应力分布.结果表明:随静态载荷增大,304不锈钢表面强塑性变形层深度增加,表面硬度略有增大,表面残余压应力增大,γ相向α相的转变效应增强;随静荷载增大,试样表面粗糙度由于静荷载较大反而有所增加;表面纳米化处理后,弯曲试样截面最大正应力降低,回转弯曲疲劳条件下能有效提高材料寿命.  相似文献   

7.
采用激光填丝焊将厚度为2 mm和3 mm的6061-T6铝合金板材进行搭接叠焊,研究激光功率对接头成形质量的影响,分析了接头的显微组织和力学性能。结果表明,增大激光功率可以有效增加热输入量,焊道逐渐宽化,焊缝熔深增加。进一步分析发现,焊缝中心区和热影响区的析出相均为Mg2Si。硬度试验结果表明,焊缝中心区由于细小等轴晶和析出相的双重作用,硬度远高于母材区与热影响区的。拉伸试验结果表明,接头的抗拉强度随激光功率的增大而升高,激光功率由2.0 kW升高至2.8 kW,抗拉强度升高约39%。  相似文献   

8.
单脉冲能量是影响微弧氧化工艺过程及氧化陶瓷层性能的重要因素。在恒压模式下,通过改变脉冲频率和占空比实现对单脉冲能量大小的控制,系统研究了单脉冲能量对铝合金微弧氧化陶瓷层的厚度、表面显微硬度、以及表面和截面形貌等的影响规律。结果表明:随着单脉冲能量的增大,微弧氧化陶瓷层厚度呈增大趋势;表面显微硬度呈先增大后减小趋势;陶瓷层表面形貌趋于凸凹不平,表面粗糙度逐渐增大。  相似文献   

9.
文章研究了碳纤维复合材料高速钻削过程中主轴转速、进给量和刀具刀尖角对孔壁表面粗糙度的影响,建立了孔壁表面粗糙度BP神经网络预测模型。结果表明:粗糙度随主轴转速的增加先增大后逐渐减小,在主轴转速为8 500r/min时,孔壁表面粗糙度最大;在进给量小于0.1mm/r,粗糙度随进给量增大而增大,关系曲线呈一阶线性关系,在进给量增大到0.1mm/r后趋于平稳;孔壁粗糙度随着钻头刀尖角的增大而逐渐减小。构建BP神经网络模型对孔壁表面粗糙度进行预测,得到的结果与实验结果基本一致,表明其可以有效地预测孔壁表面粗糙度的变化。  相似文献   

10.
汪大勇 《科技信息》2012,(3):81-81,43
通过激光熔覆实验,研究激光熔覆工艺参数对熔覆层表面高宽比的影响。实验表明,随激光功率的增大、转盘转速的增大,熔覆层表面的高宽比都增大;随扫描速度的增大,熔覆层表面的高宽比减小;随气压的增大,熔覆层表面的高宽比先提高后降低。  相似文献   

11.
纳秒激光制备钛表面纹理结构及其润湿性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
激光加工技术可在材料表面形成多种纹理结构,为了研究激光加工所得不同纹理结构对材料润湿性的影响,通过纳秒激光加工技术在金属钛表面分别加工直线、网格和点阵的表面纹理结构。采用扫描电子显微镜、接触角测量仪、粗糙度分析仪和X射线光电子能谱分别对激光加工后的钛表面进行表面形貌、接触角、粗糙度与化学成分的表征与分析。结果表明:初经激光纹理加工后试样表面的粗糙度较激光加工前均显著提高,但此时3种纹理结构试样表面接触角均小于90°;随着时间的推移,被加工材料表面化学成分的改变带来了材料表面自由能的变化,进而使被加工表面接触角总体呈现上升趋势;待试样表面化学成分稳定后接触角也基本保持不变,并且对于每种纹理结构而言,其接触角随粗糙度的增加而升高。直线、网格和点阵纹理结构试样表面接触角最终可达157.2°,153.1°和134.6°,从而实现了钛表面润湿性由亲水性向疏水性的转变。  相似文献   

12.
金属板件等离子体弧柔性成形技术基础研究   总被引:9,自引:0,他引:9  
水火弯曲成形和激光弯曲成形均存在一定局限性,而等离子体弧具有平均能量转换效率高、成本较低等优点.介绍了等离子体弧柔性成形技术的原理和特点,分析了等离子体弧柔性成形的两种基本形式——正向弯曲和反向弯曲的成形机理和控制方法,研究了弧功率、扫描速度、冷却方式、板件材质与几何尺寸等因素对柔性成形的影响规律.研究结果表明:等离子体弧可在工业环境下完成对不同厚度板材的柔性成形.在一定范围内,弯曲速度随着弧功率的提高而提高;可运用小的扫描速度提高弯曲速度,而采用大的扫描速度实现较为精确的弯曲变形;随着板件厚度的增加,相同扫描次数下的弯曲角度明显减小;导热系数大的材质,因难以在材料内部形成大的温度梯度而难以产生弯曲变形.上述研究对合理选择成形参数具有一定的指导意义.  相似文献   

13.
利用激光清洗技术对钕铁硼材料进行清洗试验,探究不同激光功率对钕铁硼材料清洗效果的影响。通过扫描电子显微镜(scanning etectron microscope, SEM)和X射线能谱仪(energy dispersive spectroscopy, EDS)分析清洗后钕铁硼材料表面形貌及元素组成成分;利用白光干涉仪检测清洗后钕铁硼材料表面的粗糙度。结果表明,清洗后钕铁硼材料的表面粗糙度随着激光功率的增大先增大后减小随后又增大;激光功率较小时,钕铁硼材料表面存在烧蚀划痕和残留的腐蚀坑,表面C、O元素不能有效去除,清洗效果不佳;在激光功率为12 W,清洗后的材料表面光洁平整,无C、O元素,表面晶相组织完整清晰无破坏,说明此时激光清洗效果最佳;当激光功率更大时,超过材料的损伤阈值,表面出现微裂纹和细小的孔洞,说明清洗效果变差。  相似文献   

14.
By friction heating single point incremental forming,truncated square pyramid parts with different draw angles of a magnesium alloy AZ31 B were formed at room temperature.Metallurgical,tensile and micro-hardness tests were carried out to obtain the effects of wall angle on microstructure and mechanical properties. The results show that grain in side wall of the formed parts becomes refined significantly. Furthermore,with the increase of draw angle,grain size increases,but strength,hardness and plasticity decrease. In addition, surface roughness tests were performed on the formed surface to determine the influence of speed of forming tool. The results show that surface roughness has a little increase with the increase of tool rotational speed.  相似文献   

15.
采用等离子体聚合方法,分别以甲基丙烯酸甲酯、正硅酸乙酯和甲基丙烯酸三氟乙酯为原料制备了3种聚合物薄膜,并利用扫描电镜(SEM)、原子力显微镜(AFM)、紫外可见光谱(UV-vis)和接触角(ContactAngle)等方法研究了不同条件下所得的聚合物薄膜的表面形貌、表面粗糙度、光学透明性及疏水性等性能.研究结果表明:聚甲基丙烯酸甲酯薄膜具有最好的可见光透过率和最佳的表面粗糙度(RMS).聚正硅酸乙酯薄膜的表面粗糙度随射频功率变化不大.聚甲基丙烯酸三氟乙酯薄膜在低功率下有较低的表面粗糙度,但随着入射功率的增加,等离子体刻蚀作用使得表面粗糙度增加.SEM照片表明聚甲基丙烯酸甲酯薄膜表面平坦致密无针孔.静态接触角测试结果表明三种聚合物薄膜都有较好的疏水性能,以聚甲基丙烯酸三氟乙酯薄膜的疏水性能最佳.利用等离子连续聚合的方法制备了聚甲基丙烯酸甲酯薄膜/聚正硅酸乙酯/聚甲基丙烯酸三氟乙酯3层复合薄膜,并对复合膜的性能进行了表征.  相似文献   

16.
针对430铁素体不锈钢切割后热影响区脆化、抗拉强度低等成形质量差的问题,本文以430铁素体不锈钢为实验材料,在辅助气压为0.6 MPa的条件下研究了工艺参数(激光功率、切割速度)对板材切口形貌、热影响区、挂渣量的影响规律。实验结果表明:随着激光功率的增大,切口反面的挂渣量减少,切口宽度增大,热影响区的晶粒有变大趋势;随着切割速度的增加,挂渣量增加,切口宽度减小,热影响区晶粒变大,切口光洁变好,切口的表面质量有所提高。在辅助气压为0.6 MPa的条件下,当激光功率350 W,切割速度0.01 m/s时,切口挂渣量最少、切口宽度质量最佳,微观组织形态较为均匀。  相似文献   

17.
采用压汞仪测量焦炭与CO2或H2 O反应后的孔隙结构特征,研究孔隙率、平均孔径、比表面积及孔径分布对焦炭高温抗拉强度的影响规律。焦炭孔隙率和平均孔径随反应率升高而增加。平均孔径小于30μm时气化反应以造孔为主,比表面积随反应率升高先增后减,大于30μm时以扩孔为主,随反应率升高而减小。与CO2相比,H2 O反应后焦炭平均孔径小,比表面积大,抗拉强度高。焦炭抗拉强度随孔隙率和平均孔径增加而降低,平均孔径小于30μm时抗拉强度随比表面积增加而降低,大于30μm时随比表面积减小而降低。焦炭中小孔数量越多抗拉强度越高,大孔数量越多抗拉强度越低。相同反应率下, H2 O反应后焦炭中小孔数量增加,比表面积大,有利于保护气孔壁结构,抑制高温抗拉强度的降低。  相似文献   

18.
本文采用高功率CO_2激光焊接组合齿轮;研究了激光焊缝质量与激光焊接工艺参数的关系;采用金相显微镜和扫描电镜观察分析了齿轮激光焊缝区的微观结构;测量了焊缝区的显微硬度分布.文中对齿轮激光焊缝区的缺陷(如裂纹、气孔等)作了较详细的研究,并对激光焊接试样作了拉伸和弯曲试验.  相似文献   

19.
为探明不同粒度特征的橡胶粉等量替换布敦岩沥青(BRA)对改性沥青混合料路用性能的影响,采用干法改性工艺拌制Sup-13型沥青混合料,开展了残留稳定度试验、冻融劈裂试验、车辙试验、低温劈裂试验和小梁弯曲试验。结果表明:采用较细粒度的橡胶粉相对较粗粒度的橡胶粉,可减小橡胶粉等量替换部分BRA对沥青混合料残留稳定度和动稳定度的不利影响,并能明显提升改性沥青混合料的劈裂抗拉强度、冻融劈裂抗拉强度比和低温劈裂压缩模量,而低温劈裂压缩变形量有所降低;100目的橡胶粉等量替换BRA,使改性沥青混合料的动稳定度提升了21.2%,小梁低温弯曲的弯拉强度和弯曲劲度模量分别提高了71.8%和87.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号