首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individuals with hereditary hemochromatosis suffer from systemic iron overload due to duodenal hyperabsorption. Most cases arise from a founder mutation in HFE (845G-->A; ref. 2) that results in the amino-acid substitution C282Y and prevents the association of HFE with beta2-microglobulin. Mice homozygous with respect to a null allele of Hfe (Hfe-/-) or homozygous with respect to the orthologous 882G-->A mutation (Hfe(845A/845A)) develop iron overload that recapitulates hereditary hemochromatosis in humans, confirming that hereditary hemochromatosis arises from loss of HFE function. Much work has focused on an exclusive role for the intestine in hereditary hemochromatosis. HFE deficiency in intestinal crypt cells is thought to cause intestinal iron deficiency and greater expression of iron transporters such as SLC11A2 (also called DMT1, DCT1 and NRAMP2) and SLC11A3 (also called IREG1, ferroportin and MTP1; ref. 3). Published data on the expression of these transporters in the duodenum of HFE-deficient mice and humans are contradictory. In this report, we used a custom microarray to assay changes in duodenal and hepatic gene expression in Hfe-deficient mice. We found unexpected alterations in the expression of Slc39a1 (mouse ortholog of SLC11A3) and Cybrd1, which encode key iron transport proteins, and Hamp (hepcidin antimicrobial peptide), a hepatic regulator of iron transport. We propose that inappropriate regulatory cues from the liver underlie greater duodenal iron absorption, possibly involving the ferric reductase Cybrd1.  相似文献   

2.
Peripheral neuropathy associated with agenesis of the corpus callosum (ACCPN) is a severe sensorimotor neuropathy associated with mental retardation, dysmorphic features and complete or partial agenesis of the corpus callosum. ACCPN is transmitted in an autosomal recessive fashion and is found at a high frequency in the province of Quebec, Canada. ACCPN has been previously mapped to chromosome 15q. The gene SLC12A6 (solute carrier family 12, member 6), which encodes the K+-Cl- transporter KCC3 and maps within the ACCPN candidate region, was screened for mutations in individuals with ACCPN. Four distinct protein-truncating mutations were found: two in the French Canadian population and two in non-French Canadian families. The functional consequence of the predominant French Canadian mutation (2436delG, Thr813fsX813) was examined by heterologous expression of wildtype and mutant KCC3 in Xenopus laevis oocytes; the truncated mutant is appropriately glycosylated and expressed at the cellular membrane, where it is non-functional. Mice generated with a targeted deletion of Slc12a6 have a locomotor deficit, peripheral neuropathy and a sensorimotor gating deficit, similar to the human disease. Our findings identify mutations in SLC12A6 as the genetic lesion underlying ACCPN and suggest a critical role for SLC12A6 in the development and maintenance of the nervous system.  相似文献   

3.
Hartnup disorder (OMIM 234500) is an autosomal recessive abnormality of renal and gastrointestinal neutral amino acid transport noted for its clinical variability. We localized a gene causing Hartnup disorder to chromosome 5p15.33 and cloned a new gene, SLC6A19, in this region. SLC6A19 is a sodium-dependent and chloride-independent neutral amino acid transporter, expressed predominately in kidney and intestine, with properties of system B(0). We identified six mutations in SLC6A19 that cosegregated with disease in the predicted recessive manner, with most affected individuals being compound heterozygotes. The disease-causing mutations that we tested reduced neutral amino acid transport function in vitro. Population frequencies for the most common mutated SLC6A19 alleles are 0.007 for 517G --> A and 0.001 for 718C --> T. Our findings indicate that SLC6A19 is the long-sought gene that is mutated in Hartnup disorder; its identification provides the opportunity to examine the inconsistent multisystemic features of this disorder.  相似文献   

4.
5.
Variants associated with meconium ileus in cystic fibrosis were identified in 3,763 affected individuals by genome-wide association study (GWAS). Five SNPs at two loci near SLC6A14 at Xq23-24 (minimum P = 1.28 × 10(-12) at rs3788766) and SLC26A9 at 1q32.1 (minimum P = 9.88 × 10(-9) at rs4077468) accounted for ~5% of phenotypic variability and were replicated in an independent sample of affected individuals (n = 2,372; P = 0.001 and 0.0001, respectively). By incorporating the knowledge that disease-causing mutations in CFTR alter electrolyte and fluid flux across surface epithelium into a hypothesis-driven GWAS (GWAS-HD), we identified associations with the same SNPs in SLC6A14 and SLC26A9 and established evidence for the involvement of SNPs in a third solute carrier gene, SLC9A3. In addition, GWAS-HD provided evidence of association between meconium ileus and multiple genes encoding constituents of the apical plasma membrane where CFTR resides (P = 0.0002; testing of 155 apical membrane genes jointly and in replication, P = 0.022). These findings suggest that modulating activities of apical membrane constituents could complement current therapeutic paradigms for cystic fibrosis.  相似文献   

6.
Sialic acid storage diseases (SASD, MIM 269920) are autosomal recessive neurodegenerative disorders that may present as a severe infantile form (ISSD) or a slowly progressive adult form, which is prevalent in Finland (Salla disease). The main symptoms are hypotonia, cerebellar ataxia and mental retardation; visceromegaly and coarse features are also present in infantile cases. Progressive cerebellar atrophy and dysmyelination have been documented by magnetic resonance imaging (ref. 4). Enlarged lysosomes are seen on electron microscopic studies and patients excrete large amounts of free sialic acid in urine. A H+/anionic sugar symporter mechanism for sialic acid and glucuronic acid is impaired in lysosomal membranes from Salla and ISSD patients. The locus for Salla disease was assigned to a region of approximately 200 kb on chromosome 6q14-q15 in a linkage study using Finnish families. Salla disease and ISSD were further shown to be allelic disorders. A physical map with P1 and PAC clones was constructed to cover the 200-kb area flanked by the loci D6S280 and D6S1622, providing the basis for precise physical positioning of the gene. Here we describe a new gene, SLC17A5 (also known as AST), encoding a protein (sialin) with a predicted transport function that belongs to a family of anion/cation symporters (ACS). We found a homozygous SLC17A5 mutation (R39C) in five Finnish patients with Salla disease and six different SLC17A5 mutations in six ISSD patients of different ethnic origins. Our observations suggest that mutations in SLC17A5 are the primary cause of lysosomal sialic acid storage diseases.  相似文献   

7.
Hartnup disorder, an autosomal recessive defect named after an English family described in 1956 (ref. 1), results from impaired transport of neutral amino acids across epithelial cells in renal proximal tubules and intestinal mucosa. Symptoms include transient manifestations of pellagra (rashes), cerebellar ataxia and psychosis. Using homozygosity mapping in the original family in whom Hartnup disorder was discovered, we confirmed that the critical region for one causative gene was located on chromosome 5p15 (ref. 3). This region is homologous to the area of mouse chromosome 13 that encodes the sodium-dependent amino acid transporter B(0)AT1 (ref. 4). We isolated the human homolog of B(0)AT1, called SLC6A19, and determined its size and molecular organization. We then identified mutations in SLC6A19 in members of the original family in whom Hartnup disorder was discovered and of three Japanese families. The protein product of SLC6A19, the Hartnup transporter, is expressed primarily in intestine and renal proximal tubule and functions as a neutral amino acid transporter.  相似文献   

8.
Most eukaryotic cell types use a common program to regulate the process of cell division. During mitosis, successful partitioning of the genetic material depends on spatially coordinated chromosome movement and cell cleavage. Here we characterize a zebrafish mutant, retsina (ret), that exhibits an erythroid-specific defect in cell division with marked dyserythropoiesis similar to human congenital dyserythropoietic anemia. Erythroblasts from ret fish show binuclearity and undergo apoptosis due to a failure in the completion of chromosome segregation and cytokinesis. Through positional cloning, we show that the ret mutation is in a gene (slc4a1) encoding the anion exchanger 1 (also called band 3 and AE1), an erythroid-specific cytoskeletal protein. We further show an association between deficiency in Slc4a1 and mitotic defects in the mouse. Rescue experiments in ret zebrafish embryos expressing transgenic slc4a1 with a variety of mutations show that the requirement for band 3 in normal erythroid mitosis is mediated through its protein 4.1R-binding domains. Our report establishes an evolutionarily conserved role for band 3 in erythroid-specific cell division and illustrates the concept of cell-specific adaptation for mitosis.  相似文献   

9.
Autosomal dominant distal renal tubular acidosis (ddRTA) is caused by mutations in SLC4A1, which encodes the polytopic chloride-bicarbonate exchanger AE1 that is normally expressed at the basolateral surface of alpha-intercalated cells in the distal nephron. Here we report that, in contrast with many disorders in which mutant membrane proteins are retained intracellularly and degraded, ddRTA can result from aberrant targeting of AE1 to the apical surface.  相似文献   

10.
Magnesium is an essential ion involved in many biochemical and physiological processes. Homeostasis of magnesium levels is tightly regulated and depends on the balance between intestinal absorption and renal excretion. However, little is known about specific proteins mediating transepithelial magnesium transport. Using a positional candidate gene approach, we identified mutations in TRPM6 (also known as CHAK2), encoding TRPM6, in autosomal-recessive hypomagnesemia with secondary hypocalcemia (HSH, OMIM 602014), previously mapped to chromosome 9q22 (ref. 3). The TRPM6 protein is a new member of the long transient receptor potential channel (TRPM) family and is highly similar to TRPM7 (also known as TRP-PLIK), a bifunctional protein that combines calcium- and magnesium-permeable cation channel properties with protein kinase activity. TRPM6 is expressed in intestinal epithelia and kidney tubules. These findings indicate that TRPM6 is crucial for magnesium homeostasis and implicate a TRPM family member in human disease.  相似文献   

11.
12.
13.
A genome-wide association study of metabolic traits in human urine   总被引:1,自引:0,他引:1  
We present a genome-wide association study of metabolic traits in human urine, designed to investigate the detoxification capacity of the human body. Using NMR spectroscopy, we tested for associations between 59 metabolites in urine from 862 male participants in the population-based SHIP study. We replicated the results using 1,039 additional samples of the same study, including a 5-year follow-up, and 992 samples from the independent KORA study. We report five loci with joint P values of association from 3.2 × 10(-19) to 2.1 × 10(-182). Variants at three of these loci have previously been linked with important clinical outcomes: SLC7A9 is a risk locus for chronic kidney disease, NAT2 for coronary artery disease and genotype-dependent response to drug toxicity, and SLC6A20 for iminoglycinuria. Moreover, we identify rs37369 in AGXT2 as the genetic basis of hyper-β-aminoisobutyric aciduria.  相似文献   

14.
Type 1 diabetes is an autoimmune disease influenced by multiple genetic loci. Although more than 20 insulin-dependent diabetes (Idd) loci have been implicated in the nonobese diabetic (NOD) mouse model, few causal gene variants have been identified. Here we show that RNA interference (RNAi) can be used to probe candidate genes in this disease model. Slc11a1 encodes a phagosomal ion transporter, Nramp1, that affects resistance to intracellular pathogens and influences antigen presentation. This gene is the strongest candidate among the 42 genes in the Idd5.2 region; a naturally occurring mutation in the protective Idd5.2 haplotype results in loss of function of the Nramp1 protein. Using lentiviral transgenesis, we generated NOD mice in which Slc11a1 is silenced by RNAi. Silencing reduced the frequency of type 1 diabetes, mimicking the protective Idd5.2 region. Our results demonstrate a role for Slc11a1 in modifying susceptibility to type 1 diabetes and illustrate that RNAi can be used to study causal genes in a mammalian model organism.  相似文献   

15.
Deafness can result from a variety of gene defects. Some genes involved in the physiology of hearing encode membrane transporters that regulate the ionic composition of the fluid bathing the inner ear. The endolymph is an extracellular fluid with an atypical composition that resembles the intracellular milieu, high in K+ and low in Na+. Recent studies have emphasized the prominent role of K+ channels in endolymph secretion and mechanical transduction. Coupled electroneutral transport of Na+, K+ and Cl- is mediated by two isoforms of the Na-K-2Cl co-transporter: the absorptive isoform BSC1 (also called NKCC2, encoded by Slc12a1 in mouse) that is exclusively expressed in kidney; and BSC2/NKCC1 (encoded by Slc12a2 in mouse), the secretory isoform which has a wider pattern of expression including epithelia, muscle cells, neurons and red blood cells. These co-transporters share 57% homology at the amino acid level and are pharmacologically inhibited by loop diuretics. There is functional and histochemical evidence for the presence of the secretory isoform of the Na-K-2Cl co-transporter in gerbil, rat and rabbit inner ear. We disrupted mouse Slc12a2 and report here that Slc12a2-/- mice are deaf and exhibit classic shaker/waltzer behaviour, indicative of inner-ear defects. We localized the co-transporter to key secreting epithelia of the mouse inner ear and show that absence of functional co-transporter leads to structural damages in the inner ear consistent with a decrease in endolymph secretion.  相似文献   

16.
Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia   总被引:15,自引:0,他引:15  
Familial hypomagnesemia with secondary hypocalcemia (OMIM 602014) is an autosomal recessive disease that results in electrolyte abnormalities shortly after birth. Affected individuals show severe hypomagnesemia and hypocalcemia, which lead to seizures and tetany. The disorder has been thought to be caused by a defect in the intestinal absorption of magnesium, rather than by abnormal renal loss of magnesium. Restoring the concentrations of serum magnesium to normal values by high-dose magnesium supplementation can overcome the apparent defect in magnesium absorption and in serum concentrations of calcium. Life-long magnesium supplementation is required to overcome the defect in magnesium handling by these individuals. We previously mapped the gene locus to chromosome 9q in three large inbred kindreds from Israel. Here we report that mutation of TRPM6 causes hypomagnesemia with secondary hypocalcemia and show that individuals carrying mutations in this gene have abnormal renal magnesium excretion.  相似文献   

17.
18.
We identified 11 human pedigrees with dominantly inherited hemolytic anemias in both the hereditary stomatocytosis and spherocytosis classes. Affected individuals in these families had an increase in membrane permeability to Na and K that is particularly marked at 0 degrees C. We found that disease in these pedigrees was associated with a series of single amino-acid substitutions in the intramembrane domain of the erythrocyte band 3 anion exchanger, AE1. Anion movements were reduced in the abnormal red cells. The 'leak' cation fluxes were inhibited by SITS, dipyridamole and NS1652, chemically diverse inhibitors of band 3. Expression of the mutated genes in Xenopus laevis oocytes induced abnormal Na and K fluxes in the oocytes, and the induced Cl transport was low. These data are consistent with the suggestion that the substitutions convert the protein from an anion exchanger into an unregulated cation channel.  相似文献   

19.
Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR beta subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.  相似文献   

20.
Regulation of glucose homeostasis by insulin depends on the maintenance of normal beta-cell mass and function. Insulin-like growth factor 1 (Igf1) has been implicated in islet development and differentiated function, but the factors controlling this process are poorly understood. Pancreatic islets produce Igf1 and Igf2, which bind to specific receptors on beta-cells. Igf1 has been shown to influence beta-cell apoptosis, and both Igf1 and Igf2 increase islet growth; Igf2 does so in a manner additive with fibroblast growth factor 2 (ref. 10). When mice deficient for the Igf1 receptor (Igf1r(+/-)) are bred with mice lacking insulin receptor substrate 2 (Irs2(-/-)), the resulting compound knockout mice show a reduction in mass of beta-cells similar to that observed in pancreas of Igf1r(-/-) mice (ref. 11), suggesting a role for Igf1r in growth of beta-cells. It is possible, however, that the effects in these mice occur secondary to changes in vascular endothelium or in the pancreatic ductal cells, or because of a decrease in the effects of other hormones implicated in islet growth. To directly define the role of Igf1, we have created a mouse with a beta-cell-specific knockout of Igf1r (betaIgf1r(-/-)). These mice show normal growth and development of beta-cells, but have reduced expression of Slc2a2 (also known as Glut2) and Gck (encoding glucokinase) in beta-cells, which results in defective glucose-stimulated insulin secretion and impaired glucose tolerance. Thus, Igf1r is not crucial for islet beta-cell development, but participates in control of differentiated function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号