首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic exchange force microscopy with atomic resolution   总被引:1,自引:0,他引:1  
Kaiser U  Schwarz A  Wiesendanger R 《Nature》2007,446(7135):522-525
The ordering of neighbouring atomic magnetic moments (spins) leads to important collective phenomena such as ferromagnetism and antiferromagnetism. A full understanding of magnetism on the nanometre scale therefore calls for information on the arrangement of spins in real space and with atomic resolution. Spin-polarized scanning tunnelling microscopy accomplishes this but can probe only conducting materials. Force microscopy can be used on any sample independent of its conductivity. In particular, magnetic force microscopy is well suited to exploring ferromagnetic domain structures. However, atomic resolution cannot be achieved because data acquisition involves the sensing of long-range magnetostatic forces between tip and sample. Magnetic exchange force microscopy has been proposed for overcoming this limitation: by using an atomic force microscope with a magnetic tip, it should be possible to detect the short-range magnetic exchange force between tip and sample spins. Here we show for a prototypical antiferromagnetic insulator, the (001) surface of nickel oxide, that magnetic exchange force microscopy can indeed reveal the arrangement of both surface atoms and their spins simultaneously. In contrast with previous attempts to implement this method, we use an external magnetic field to align the magnetic polarization at the tip apex so as to optimize the interaction between tip and sample spins. This allows us to observe the direct magnetic exchange coupling between the spins of the tip atom and sample atom that are closest to each other, and thereby demonstrate the potential of magnetic exchange force microscopy for investigations of inter-spin interactions at the atomic level.  相似文献   

2.
Fishlock TW  Oral A  Egdell RG  Pethica JB 《Nature》2000,404(6779):743-745
Since the realization that the tips of scanning probe microscopes can interact with atoms at surfaces, there has been much interest in the possibility of building or modifying nanostructures or molecules directly from single atoms. Individual large molecules can be positioned on surfaces, and atoms can be transferred controllably between the sample and probe tip. The most complex structures are produced at cryogenic temperatures by sliding atoms across a surface to chosen sites. But there are problems in manipulating atoms laterally at higher temperatures--atoms that are sufficiently well bound to a surface to be stable at higher temperatures require a stronger tip interaction to be moved. This situation differs significantly from the idealized weakly interacting tips of scanning tunnelling or atomic force microscopes. Here we demonstrate that precise positioning of atoms on a copper surface is possible at room temperature. The triggering mechanism for the atomic motion unexpectedly depends on the tunnelling current density, rather than the electric field or proximity of tip and surface.  相似文献   

3.
使用碳纳米管AFM针尖的蛋白质高分辨率成像   总被引:1,自引:0,他引:1  
原子力显微镜(AFM)是分析生物分子结构的有效手段,而目前使用的探针针尖的性质限制了高分辨率图像的获得。该文将碳纳米管安装到原子力显微镜的传统针尖上,制作出碳纳米管针尖以解决这个问题。运用碳纳米管针尖在大气常温条件下获得了由3个单元组成的小鼠抗体IgG蛋白质的Y形结构,并且分子的尺寸与X射线晶体衍射的结果非常接近,这种效果用传统针尖是无法获得的。获得的蛋白质分子超微结构的高分辨率图像为研究蛋白质分子功能提供了有价值的信息。  相似文献   

4.
针尖化学——化学家的新挑战   总被引:4,自引:0,他引:4  
提出针尖化学的概念和围绕这一新概念开展的代表性研究工作。利用功能化的扫描探针显微镜(SPM)的针尖,考察自组装膜表面酸碱基团的局域解离性质、测定化学键的强度、聚焦化学反应制备纳米结构等。SPM针尖分别起着化学反应的探针、场所和透镜的作用。  相似文献   

5.
Suenaga K  Koshino M 《Nature》2010,468(7327):1088-1090
The properties of many nanoscale devices are sensitive to local atomic configurations, and so elemental identification and electronic state analysis at the scale of individual atoms is becoming increasingly important. For example, graphene is regarded as a promising candidate for future devices, and the electronic properties of nanodevices constructed from this material are in large part governed by the edge structures. The atomic configurations at graphene boundaries have been investigated by transmission electron microscopy and scanning tunnelling microscopy, but the electronic properties of these edge states have not yet been determined with atomic resolution. Whereas simple elemental analysis at the level of single atoms can now be achieved by means of annular dark field imaging or electron energy-loss spectroscopy, obtaining fine-structure spectroscopic information about individual light atoms such as those of carbon has been hampered by a combination of extremely weak signals and specimen damage by the electron beam. Here we overcome these difficulties to demonstrate site-specific single-atom spectroscopy at a graphene boundary, enabling direct investigation of the electronic and bonding structures of the edge atoms-in particular, discrimination of single-, double- and triple-coordinated carbon atoms is achieved with atomic resolution. By demonstrating how rich chemical information can be obtained from single atoms through energy-loss near-edge fine-structure analysis, our results should open the way to exploring the local electronic structures of various nanodevices and individual molecules.  相似文献   

6.
Bobrov K  Mayne AJ  Dujardin G 《Nature》2001,413(6856):616-619
The electronic properties of insulators such as diamond are of interest not only for their passive dielectric capabilities for use in electronic devices, but also for their strong electron confinement on atomic scales. However, the inherent lack of electrical conductivity in insulators usually prevents the investigation of their surfaces by atomic-scale characterization techniques such as scanning tunnelling microscopy (STM). And although atomic force microscopy could in principle be used, imaging diamond surfaces has not yet been possible. Here, we demonstrate that STM can be used in an unconventional resonant electron injection mode to image insulating diamond surfaces and to probe their electronic properties at the atomic scale. Our results reveal striking electronic features in high-purity diamond single crystals, such as the existence of one-dimensional fully delocalized electronic states and a very long diffusion length for conduction-band electrons. We expect that our method can be applied to investigate the electronic properties of other insulating materials and so help in the design of atomic-scale electronic devices.  相似文献   

7.
Several fundamental problems in hydrophobic force measurements using atomic force microscope (AFM) are discussed in this paper. A novel method for colloid probe preparation based on chemical etching technology is proposed, which is specially fit for the unique demands of hydrophobic force measurements by AFM. The features of three different approaches for determining spring constants of rectangular cantilevers, including geometric dimension, Cleveland and Sader methods are compared. The influences of the sizes of the colloids on the measurements of the hydrophobic force curves are investigated. Our experimental results showed that by selecting colloid probe with proper spring constant and tip size, the hydrophobic force and the complete hydrophobic interaction force curve can be measured by using AFM.  相似文献   

8.
Microscopy is an essential technique for observation on living cells. There is currently great interest in apply scanning probe microscopy to image living biological cells in their natural environment at the nanometer scale. Scanning ion conductance microscopy is a new form of scanning probe microscopy, which enables non-contact high resolution imaging of living biological cells. Based on a scanned nanopipette in physiological buffer, the distance feedback control uses the ion current to control the distance between the pipette tip and the sample surface. However, this feedback control has difficulties over slopes on convoluted cell surfaces, which limits its resolution. In this study, we present an improved form of feedback control that removes the contribution of up to the third order slope from the ion current signal, hence providing a more accurate signal for controlling the distance. We show that this allows faster and lower noise topographic high resolution imaging.  相似文献   

9.
Carbon nanotubes as nanoscale mass conveyors   总被引:1,自引:0,他引:1  
Regan BC  Aloni S  Ritchie RO  Dahmen U  Zettl A 《Nature》2004,428(6986):924-927
The development of manipulation tools that are not too 'fat' or too 'sticky' for atomic scale assembly is an important challenge facing nanotechnology. Impressive nanofabrication capabilities have been demonstrated with scanning probe manipulation of atoms and molecules on clean surfaces. However, as fabrication tools, both scanning tunnelling and atomic force microscopes suffer from a loading deficiency: although they can manipulate atoms already present, they cannot efficiently deliver atoms to the work area. Carbon nanotubes, with their hollow cores and large aspect ratios, have been suggested as possible conduits for nanoscale amounts of material. Already much effort has been devoted to the filling of nanotubes and the application of such techniques. Furthermore, carbon nanotubes have been used as probes in scanning probe microscopy. If the atomic placement and manipulation capability already demonstrated by scanning probe microscopy could be combined with a nanotube delivery system, a formidable nanoassembly tool would result. Here we report the achievement of controllable, reversible atomic scale mass transport along carbon nanotubes, using indium metal as the prototype transport species. This transport process has similarities to conventional electromigration, a phenomenon of critical importance to the semiconductor industry.  相似文献   

10.
Wang Z  Saito M  McKenna KP  Gu L  Tsukimoto S  Shluger AL  Ikuhara Y 《Nature》2011,479(7373):380-383
The ability to resolve spatially and identify chemically atoms in defects would greatly advance our understanding of the correlation between structure and property in materials. This is particularly important in polycrystalline materials, in which the grain boundaries have profound implications for the properties and applications of the final material. However, such atomic resolution is still extremely difficult to achieve, partly because grain boundaries are effective sinks for atomic defects and impurities, which may drive structural transformation of grain boundaries and consequently modify material properties. Regardless of the origin of these sinks, the interplay between defects and grain boundaries complicates our efforts to pinpoint the exact sites and chemistries of the entities present in the defective regions, thereby limiting our understanding of how specific defects mediate property changes. Here we show that the combination of advanced electron microscopy, spectroscopy and first-principles calculations can provide three-dimensional images of complex, multicomponent grain boundaries with both atomic resolution and chemical sensitivity. The high resolution of these techniques allows us to demonstrate that even for magnesium oxide, which has a simple rock-salt structure, grain boundaries can accommodate complex ordered defect superstructures that induce significant electron trapping in the bandgap of the oxide. These results offer insights into interactions between defects and grain boundaries in ceramics and demonstrate that atomic-scale analysis of complex multicomponent structures in materials is now becoming possible.  相似文献   

11.
Kühnle A  Linderoth TR  Hammer B  Besenbacher F 《Nature》2002,415(6874):891-893
Stereochemistry plays a central role in controlling molecular recognition and interaction: the chemical and biological properties of molecules depend not only on the nature of their constituent atoms but also on how these atoms are positioned in space. Chiral specificity is consequently fundamental in chemical biology and pharmacology and has accordingly been widely studied. Advances in scanning probe microscopies now make it possible to probe chiral phenomena at surfaces at the molecular level. These methods have been used to determine the chirality of adsorbed molecules, and to provide direct evidence for chiral discrimination in molecular interactions and the spontaneous resolution of adsorbates into extended enantiomerically pure overlayers. Here we report scanning tunnelling microscopy studies of cysteine adsorbed to a (110) gold surface, which show that molecular pairs formed from a racemic mixture of this naturally occurring amino acid are exclusively homochiral, and that their binding to the gold surface is associated with local surface restructuring. Density-functional theory calculations indicate that the chiral specificity of the dimer formation process is driven by the optimization of three bonds on each cysteine molecule. These findings thus provide a clear molecular-level illustration of the well known three-point contact model for chiral recognition in a simple bimolecular system.  相似文献   

12.
Kemiktarak U  Ndukum T  Schwab KC  Ekinci KL 《Nature》2007,450(7166):85-88
The scanning tunnelling microscope (STM) relies on localized electron tunnelling between a sharp probe tip and a conducting sample to attain atomic-scale spatial resolution. In the 25-year period since its invention, the STM has helped uncover a wealth of phenomena in diverse physical systems--ranging from semiconductors to superconductors to atomic and molecular nanosystems. A severe limitation in scanning tunnelling microscopy is the low temporal resolution, originating from the diminished high-frequency response of the tunnel current readout circuitry. Here we overcome this limitation by measuring the reflection from a resonant inductor-capacitor circuit in which the tunnel junction is embedded, and demonstrate electronic bandwidths as high as 10 MHz. This approximately 100-fold bandwidth improvement on the state of the art translates into fast surface topography as well as delicate measurements in mesoscopic electronics and mechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM have allowed us to perform thermometry at the nanometre scale. Furthermore, we have detected high-frequency mechanical motion with a sensitivity approaching approximately 15 fm Hz(-1/2). This sensitivity is on par with the highest available from nanoscale optical and electrical displacement detection techniques, and the radio-frequency STM is expected to be capable of quantum-limited position measurements.  相似文献   

13.
解理云母表面粘着特性的实验   总被引:4,自引:1,他引:3  
为了解粘着行为的机理,对法向力测量系统进行了改进,利用应变测量和动态应变仪连续采集信号实现对分离力的实时动态测量,理论分辨率达到0.023mN。利用该系统对新鲜解理云母作为接触副的趋近分离实验现象进行了测量,发现新鲜解理云母直接接触时的分离力随着接触次数的增加而减小。在中间层存在水膜时,分离力增加约3倍,这验证了弯月面力对粘着力有显著影响,同时证明系统的动力学特性能够导致突跳现象的发生,且不一定伴随表面的破坏或塑性变形。  相似文献   

14.
室温下通过调整磁控溅射时间制备了不同厚度的GeSbTe薄膜.利用原子力显微镜和台阶仪观察薄膜的表面形貌,测量薄膜厚度,并借助TriboIndenter纳米力学测试系统,分析探讨了薄膜的黏附和摩擦特性.研究结果表明:随着溅射时间的增加,薄膜表面粗糙度减小,厚度增加,同时表面质量提高;探针直径、相对湿度、薄膜表面质量以及探针载荷等因素对薄膜的黏附和摩擦特性均有重要影响;在满足存储要求的前提下,通过减小探针直径、降低相对湿度能够有效降低黏附力和摩擦力;而提高薄膜表面质量,为探针施加合适的载荷,有助于改善探针与薄膜表面之间的摩擦特性.  相似文献   

15.
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.  相似文献   

16.
对导电原子力显微镜在介质层电流图像检测中存在的假像进行了研究。发现这种假像归因于导电探针针尖较大的直径,其大小与被检测样品表面的缺陷点、漏洞、沟穴大小相关。研究表明,为提高图像分辨率,避免检测过程中存在的假像,需要使用具有纳米直径针尖的超尖导电探针。  相似文献   

17.
通过测量原子量级光滑的两表面间的法向作用力来认识粘着行为发生的过程及机理,利用分辨率为0.02 mN的表面力仪法向力测量系统对存在液体介质的云母表面分离过程中的分离力进行动态测量。在一定范围内,当中间层液体量越大,分离力也越大,粘着现象也就越明显。当中间层为粘性液体如石蜡基中性油时,粘滞力对粘着特性的影响较大;当中间层为小粘度的液体如去离子水时,液体的表面能会对粘着特性有显著影响。  相似文献   

18.
H Arakawa  K Umemura  A Ikai 《Nature》1992,358(6382):171-173
Scanning tunnelling microscopy and atomic force microscopy, one scanning the tunnelling current and the other the repulsive atomic force between same and probe, can give high-quality surface topographies of proteins, which have been difficult to obtain by more conventional methods such as transmission electron microscopy.  相似文献   

19.
C Barth  M Reichling 《Nature》2001,414(6859):54-57
Alumina is a technologically important oxide crystal because of its use as a catalyst and as a substrate for microelectronic applications. A precise knowledge of its surface atomic structure is a prerequisite for understanding and controlling the physical processes involved in many of its applications. Here we use a dynamic scanning force microscopy technique to image directly the atomic structure of the high-temperature phase of the alpha-Al2O3(0001) surface. Evidence for a surface reconstruction appears as a grid of protrusions that represent a rhombic unit cell, and we confirm that the arrangement of atoms is in the form of surface domains with hexagonal atomic order at the centre and disorder at the periphery. We show that, on exposing the surface to water and hydrogen, this surface structure is important in the formation of hydroxide clusters. These clusters appear as a regular pattern of rings that can be explained by self-organization processes involving cluster-surface and cluster-cluster interactions. Alumina has long been regarded as the definitive test for atomic-resolution force microscopy of insulators so the whole class of insulating oxides should now open for direct atomic-scale surface investigations.  相似文献   

20.
The mechanical behavior of highly oriented pyrolyti c graphite (HOPG) has been investigated in this paper, by simulating a machining p rocess in a nano-indent test with the method of molecular dynamics (MD) and by doing an experiment directly using the probe tip of atomic force microscope (AFM ) as tool. The characteristics and properties of graphite crystal lattice are di scussed firstly, then, three potentials are selected for different interaction b etween graphite atoms according to the graphite prope...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号