共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
乳腺癌转移是限制其临床治疗的主要因素.十六烷基三甲基溴化铵(CTAB)作为一种潜在的抗癌化合物具有明显的抗肿瘤作用.使用划痕和Transwell实验证明了CTAB可抑制ZR-75-1细胞迁移.乳腺癌干细胞是导致乳腺癌转移的一个重要因素.通过免疫荧光、流式细胞术和细胞成球实验证明CTAB降低了乳腺癌干细胞比例,并且抑制了干性标记物CD44和CD133的表达.实验证明CTAB抑制乳腺癌干细胞并且抑制乳腺癌细胞迁移. 相似文献
3.
通过在体外培养、鉴定人的骨髓间充质干细胞与小鼠神经干细胞,用骨髓间充质干细胞条件培养基分别在增殖与分化条件下对神经干细胞进行培养.发现,间充质干细胞条件培养基在增殖条件下能加快神经球内神经干细胞的迁移,使神经球解聚,对神经干细胞增殖没有影响;而间充质干细胞条件培养基在分化条件下,能增加神经干细胞向少突胶质细胞分化的能力,降低向星型胶质细胞的分化能力,对向神经元分化能力没有影响,间充质干细胞可能是通过促进神经干细胞迁移、分化而加快神经损伤的修复的. 相似文献
4.
MicroRNA-10b and breast cancer metastasis 总被引:1,自引:0,他引:1
Gee HE Camps C Buffa FM Colella S Sheldon H Gleadle JM Ragoussis J Harris AL 《Nature》2008,455(7216):E8-9; author reply E9
5.
Tavazoie SF Alarcón C Oskarsson T Padua D Wang Q Bos PD Gerald WL Massagué J 《Nature》2008,451(7175):147-152
6.
7.
Involvement of chemokine receptors in breast cancer metastasis 总被引:344,自引:0,他引:344
Müller A Homey B Soto H Ge N Catron D Buchanan ME McClanahan T Murphy E Yuan W Wagner SN Barrera JL Mohar A Verástegui E Zlotnik A 《Nature》2001,410(6824):50-56
Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1alpha and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells. 相似文献
8.
Stem cells, cancer, and cancer stem cells. 总被引:312,自引:0,他引:312
Stem cell biology has come of age. Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine. Perhaps the most important and useful property of stem cells is that of self-renewal. Through this property, striking parallels can be found between stem cells and cancer cells: tumours may often originate from the transformation of normal stem cells, similar signalling pathways may regulate self-renewal in stem cells and cancer cells, and cancer cells may include 'cancer stem cells' - rare cells with indefinite potential for self-renewal that drive tumorigenesis. 相似文献
9.
刘建华 《中山大学研究生学刊(自然科学与医学版)》2006,27(1):7-12
心血管疾病严重威胁着人类的健康,近年来,随着对干细胞多向分化潜能研究的进展,其在心血管疾病方面的应用也引起了关注,而骨髓间质干细胞(MSC)以其横向分化潜能在治疗心血管疾病方面显示了巨大潜力。不少研究已证实MSC在体内、外均可分化为心肌细胞,然而其分化为心肌细胞的机制,诱导分化的相关因素和如何定向诱导,如何提高其分化效率等均为人们所关注,本文就此作一综述。 相似文献
10.
M Yu DT Ting SL Stott BS Wittner F Ozsolak S Paul JC Ciciliano ME Smas D Winokur AJ Gilman MJ Ulman K Xega G Contino B Alagesan BW Brannigan PM Milos DP Ryan LV Sequist N Bardeesy S Ramaswamy M Toner S Maheswaran DA Haber 《Nature》2012,487(7408):510-513
Circulating tumour cells (CTCs) shed into blood from primary cancers include putative precursors that initiate distal metastases. Although these cells are extraordinarily rare, they may identify cellular pathways contributing to the blood-borne dissemination of cancer. Here, we adapted a microfluidic device for efficient capture of CTCs from an endogenous mouse pancreatic cancer model and subjected CTCs to single-molecule RNA sequencing, identifying Wnt2 as a candidate gene enriched in CTCs. Expression of WNT2 in pancreatic cancer cells suppresses anoikis, enhances anchorage-independent sphere formation, and increases metastatic propensity in vivo. This effect is correlated with fibronectin upregulation and suppressed by inhibition of MAP3K7 (also known as TAK1) kinase. In humans, formation of non-adherent tumour spheres by pancreatic cancer cells is associated with upregulation of multiple WNT genes, and pancreatic CTCs revealed enrichment for WNT signalling in 5 out of 11 cases. Thus, molecular analysis of CTCs may identify candidate therapeutic targets to prevent the distal spread of cancer. 相似文献
11.
Somatic support cells restrict germline stem cell self-renewal and promote differentiation 总被引:15,自引:0,他引:15
Stem cells maintain populations of highly differentiated, short-lived cell-types, including blood, skin and sperm, throughout adult life. Understanding the mechanisms that regulate stem cell behaviour is crucial for realizing their potential in regenerative medicine. A fundamental characteristic of stem cells is their capacity for asymmetric division: daughter cells either retain stem cell identity or initiate differentiation. However, stem cells are also capable of symmetric division where both daughters remain stem cells, indicating that mechanisms must exist to balance self-renewal capacity with differentiation. Here we present evidence that support cells surrounding the stem cells restrict self-renewal and control stem cell number by ensuring asymmetric division. Loss of function of the Drosophila Epidermal growth factor receptor in somatic cells disrupted the balance of self-renewal versus differentiation in the male germline, increasing the number of germline stem cells. We propose that activation of this receptor specifies normal behaviour of somatic support cells; in turn, the somatic cells play a guardian role, providing information that prevents self-renewal of stem cell identity by the germ cell they enclose. 相似文献
12.
Wnt signalling in stem cells and cancer 总被引:3,自引:0,他引:3
The canonical Wnt cascade has emerged as a critical regulator of stem cells. In many tissues, activation of Wnt signalling has also been associated with cancer. This has raised the possibility that the tightly regulated self-renewal mediated by Wnt signalling in stem and progenitor cells is subverted in cancer cells to allow malignant proliferation. Insights gained from understanding how the Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal, epidermal and haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals. 相似文献
13.
Glioma stem cells promote radioresistance by preferential activation of the DNA damage response 总被引:5,自引:0,他引:5
Bao S Wu Q McLendon RE Hao Y Shi Q Hjelmeland AB Dewhirst MW Bigner DD Rich JN 《Nature》2006,444(7120):756-760
Ionizing radiation represents the most effective therapy for glioblastoma (World Health Organization grade IV glioma), one of the most lethal human malignancies, but radiotherapy remains only palliative because of radioresistance. The mechanisms underlying tumour radioresistance have remained elusive. Here we show that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity. The fraction of tumour cells expressing CD133 (Prominin-1), a marker for both neural stem cells and brain cancer stem cells, is enriched after radiation in gliomas. In both cell culture and the brains of immunocompromised mice, CD133-expressing glioma cells survive ionizing radiation in increased proportions relative to most tumour cells, which lack CD133. CD133-expressing tumour cells isolated from both human glioma xenografts and primary patient glioblastoma specimens preferentially activate the DNA damage checkpoint in response to radiation, and repair radiation-induced DNA damage more effectively than CD133-negative tumour cells. In addition, the radioresistance of CD133-positive glioma stem cells can be reversed with a specific inhibitor of the Chk1 and Chk2 checkpoint kinases. Our results suggest that CD133-positive tumour cells represent the cellular population that confers glioma radioresistance and could be the source of tumour recurrence after radiation. Targeting DNA damage checkpoint response in cancer stem cells may overcome this radioresistance and provide a therapeutic model for malignant brain cancers. 相似文献
14.
M Montagner E Enzo M Forcato F Zanconato A Parenti E Rampazzo G Basso G Leo A Rosato S Bicciato M Cordenonsi S Piccolo 《Nature》2012,487(7407):380-384
The molecular determinants of malignant cell behaviours in breast cancer remain only partially understood. Here we show that SHARP1 (also known as BHLHE41 or DEC2) is a crucial regulator of the invasive and metastatic phenotype in triple-negative breast cancer (TNBC), one of the most aggressive types of breast cancer. SHARP1 is regulated by the p63 metastasis suppressor and inhibits TNBC aggressiveness through inhibition of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α (HIFs). SHARP1 opposes HIF-dependent TNBC cell migration in vitro, and invasive or metastatic behaviours in vivo. SHARP1 is required, and sufficient, to limit expression of HIF-target genes. In primary TNBC, endogenous SHARP1 levels are inversely correlated with those of HIF targets. Mechanistically, SHARP1 binds to HIFs and promotes HIF proteasomal degradation by serving as the HIF-presenting factor to the proteasome. This process is independent of pVHL (von Hippel-Lindau tumour suppressor), hypoxia and the ubiquitination machinery. SHARP1 therefore determines the intrinsic instability of HIF proteins to act in parallel to, and cooperate with, oxygen levels. This work sheds light on the mechanisms and pathways by which TNBC acquires invasiveness and metastatic propensity. 相似文献
15.
乳腺癌脑转移(breast cancer brain metastasis,BCBM)的发病机制尚未明确。为了探究BCBM的发病机制,对BCBM差异表达基因的生物学功能进行研究并筛选关键调控基因。从基因表达综合数据库(gene expression omnibus,GEO)下载4个BCBM基因表达谱数据(GSE12237、GSE100534、GSE125989以及GSE43837),采用R语言筛选差异表达基因,采用富集分析包括基因本体分析(gene ontology,GO)和京都基因与基因组百科全书分析(Kyoto encyclopedia of genes and genomes,KEGG)进行生物学功能分析,采用STRING和Cytoscape分析蛋白质相互作用网络,采用Kaplan-Meier进行生存分析。结果表明,同时存在于2个及以上基因表达谱数据中的差异表达基因261个,GO分析主要涉及细胞外基质组织、细胞外结构组织等生物过程,细胞外基质结构组成、胶原结合等分子功能,含有胶原的细胞外基质、胶原蛋白三聚物等细胞组分;KEGG分析主要涉及蛋白质消化和吸收、局部黏附等通路。蛋白质相互作用网络分析得到9个关键调控基因,其中,DCN、COL6A1与BCBM的生存率显著相关,可作为潜在的BCBM关键调控基因,并为BCBM分子机制的研究提供思路。 相似文献
16.
Xiaoning Li Xing Yang Xujie Liu Wei He Qianli Huang Shengrong Li Qingling Feng 《自然科学进展(英文版)》2018,28(5):598-608
Rhombohedron-like and fusiform calcium carbonate nanoparticles were fabricated using a new method. Their geometry was controlled by varying the mixing speed and ratio of ethanol versus water in reaction system. The calcium carbonate nanoparticles(CCNPs) have slight effect on viability of human bone-marrow mesenchymal stem cells(hBMSCs) with dose-dependent and shape-dependent, but they can significantly promote osteogenic differentiation of hBMSCs in vitro by 10–37% increase of alkaline phosphatase(ALP) activity, 9–36% growth of collagen secretion and 1.13–1.83 folds upregulation of osteogenesis-related genes, even at lower dose ranges(5–20 μg/ml). The efficacity of promoting osteogenesis depends on the shape and dose of CCNPs. Furthermore,adipogenesis was inhibited by less accumulation of lipid droplets, lower triglyceride(TG) secretion and downregulation of adipogenesis-related genes. These findings improve the understanding of effects CCNPs on hBMSCs fate towards osteoblasts or adipocytes and have meaningful impact for combining use of CCNPs and hBMSCs in tissue engineering and regenerative medicine fields. 相似文献
17.
18.
19.
20.