共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米管TiO2的形貌结构和物理化学特性 总被引:15,自引:4,他引:15
对新型纳米管状TiO2的形貌结构和物理化学特性进行了考察,发现此种TiO2纳米管由2~5个单层TiO2分子组成,管内径在4.2~5.9nm之间,有很高的比表面积和孔体积(分别这379m^2g和1.431cm^3/g),对染料活性艳红X-3B的脱色活性可比DegussaP-25TiO2提高约2倍,是一种很有希望在光催化和复合纳米材料等方面应用的新型TiO2材料。 相似文献
2.
3.
高度有序的TiO2纳米管阵列能够减少界面复合、提高载流子定向传输效率以及增加光散射,从而使其在染料敏化太阳能电池(DSSCs)中具有潜在的应用价值.纳米管的表面形貌和结构(如长度、壁厚、管直径和管间距)等都会对电池效率产生一定的影响.本文采用阳极氧化的方法,用甲酰胺(FA)、乙二醇(EG)、少量的水以及氟化铵作为电解液,成功制备了具有不同粗糙度的TiO2纳米管阵列.随着FA和EG比例的不同,纳米管的管口直径在72~120nm之间变化,同时,管壁也在19~47nm之间变化.随着FA含量的增加,管壁的粗糙度也逐渐增加.将该TiO2纳米管阵列作为光阳极应用于DSSCs中,发现开路电压和壁厚密切相关,短路电流密度与管长和管间距等因素也有着紧密的联系,这些结果为进一步研发不同结构的TiO2纳米管阵列在DSSCs中的应用提供了理论与实验依据. 相似文献
4.
Zn掺杂TiO2纳米管电极制备及其对五氯酚的光电催化降解 总被引:2,自引:0,他引:2
采用阳极氧化法在Ti基底上制备TiO2纳米管电极,再通过浸渍法制备出Zn掺杂TiO2纳米管电极.采用场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、电子探针显微分析(EPMA)、紫外-可见漫反射吸收光谱(DRS)技术对其进行表征,电极表面分布有均匀的纳米管状阵列,管径50~90nm,管长约200nm,管壁厚约为15nm,锐钛矿型TiO2,Zn元素以ZnO小团簇形态沉积在TiO2纳米管电极表面,与TiO2纳米管电极相比起始吸收带边红移近20nm.分别使用Zn掺杂TiO2纳米管电极和TiO2纳米管电极对相同五氯酚(PCP)溶液(初始浓度为20mg/L,电解质Na2SO4浓度为0.01mol/L,初始pH为7.03)进行光电催化降解120min.结果表明:在紫外光(400μW/cm2)或可见光(4500μW/cm2)的照射下,Zn掺杂TiO2纳米管电极对PCP的降解率分别为73.5%和18.4%,而TiO2纳米管电极对PCP的降解率分别为48.5%和3.2%.Zn掺杂TiO2纳米管电极光电催化降解PCP的准一级反应动力学常数分别为TiO2纳米管电极的2.0倍和5.8倍,且其光电催化性能与Zn掺杂浓度有关,最优掺杂浓度为0.909%.Zn掺杂TiO2纳米管电极的稳定性良好. 相似文献
5.
TiO_2纳米管的阳极氧化法制备及对对氯苯酚的光电降解研究 总被引:1,自引:0,他引:1
《科学通报》2008,(13)
在含有乙醇的氢氟酸溶液中,用阳极氧化法制备了高度取向的TiO2纳米管阵列,并用扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman)、紫外-可见漫反射(DRS)和荧光光谱(PL)对样品进行表征,探讨了TiO2纳米管阵列的形成机理.结果表明,制备的TiO2纳米管阵列垂直生长于钛基底表面,分布均匀,管径约为90nm,管壁厚约20nm,管长约400~500nm,并且表现出更大的禁带宽度和良好的光致发光特性.此外,使用该纳米管对对氯苯酚的光电催化降解实验表明,光电催化效率明显高于光催化和电化学过程之和,表现出一定的光电协同作用;施加的阳极偏压也存在一个最佳值. 相似文献
6.
对基于[2-甲氧基-5-(2′-乙烯基-己氧基)聚对苯乙烯撑](MEH-PPV)/纳米TiO2混合材料制备的光电二极管的光伏特性进行了研究. 研究发现, 加入TiO2纳米管制备的器件具有高的开路电压和短路电流. 通过进一步优化MEH-PPV:TiO2纳米管器件的材料混合比例, 在500 nm, 16.7 mW/cm2的入射光照射下, 器件的短路电流达到了9.27 mA/cm2, 开路电压达到了1.1 V, 功率转换效率相应地达到了0.017%, 其中功率转换效率比没有掺杂的MEH-PPV器件提高了10倍. 相似文献
7.
8.
应用离散偶极子近似方法计算了金纳米管结构的消光光谱及其近场电场分布, 并与金纳米柱的计算结果进行了比较. 结果发现, 当以等离子体共振峰波长入射时, 管状纳米结构拥有更大面积的强电场分布. 故管状纳米结构更适合作为表面增强拉曼散射的衬底, 用于生物分子或者化学分子的探测. 另外, 我们还研究了纳米管结构参数对其等离子体共振峰的影响, 以调节等离子体共振峰的位置, 从而满足其在表面增强拉曼散射等等离子体光子学方面的应用. 相似文献
9.
PVP修饰的单分散的纳米TiO2制备与纳米TiO2/PP复合材料的研究 总被引:2,自引:0,他引:2
通过溶剂热合成法以乙醇为溶剂和TiCl4、Ti(OC4H9)4及其混合物为前驱物在140℃的条件下制备聚乙烯吡咯烷酮(PVP)修饰的单分散的纳米二氧化钛(TiO2)并对其进行了表征.X-射线衍射和光电子能谱测试结果表明。我们已成功地制备了具有锐钛矿结构的纳米TiO2.透射电镜的观察结果表明。制备出的TiO2为均匀的、单分散的球形颗粒,粒径约为8nm.同时紫外-可见吸光光度分析(UV-VIS)研究表明。所制备的PVP修饰TiO2纳米材料在可见光区具有很好的透过率。而在紫外光区能有效地吸收线紫外光.说明该材料是一种紫外吸收剂.同时对纳米TiO2/PP复合材料的力学性能和老化性能进行了研究。结果表明纳米TiO2粒子的加入不仅提高了PP的力学性能。而且也改善了紫外光老化性。 相似文献
10.
为了实现利用可见光高效产氢, 研究开发了具有可见光响应的CdS/TiO2纳米管阵列光催化剂. 利用电化学阳极氧化法, 在0.15 mol/L NH4F和0.08 mol/L H2C2O4的电解液中用钛片制备TiO2纳米管阵列, 纳米管管径为80~100 nm, 管长约为550 nm; 在氨-硫脲体系中通过水浴化学池沉积将CdS纳米颗粒复合在TiO2纳米管上. 以300 W氙灯为光源, CdS/TiO2纳米管阵列(2×54 mm×100 mm)作为光阳极, 外加1.0 V槽电压, 0.1 mol/L Na2S和0.04 mol/L Na2SO3为电子给体, 光电产氢速率达到245.4 μL/(h·cm2), 表明CdS/TiO2纳米管阵列是一种有前景的光催化产氢材料. 相似文献
11.
纳米结构材料由于其独特的物理化学性能而备受人们关注[1~4].在催化、非线性光学器件、气敏元件和太阳能电池等领域具有广泛应用价值的纳米TiO_2是当前研究热点之一~[2,3].掺杂贵金属可以显著改善和提高TiO_2的性能~[5~7],如Au-TiO_2体系所表现出的良好催化性能~[7~9].文献报道:5nm以下的金纳米粒子具有好的催化活性~[5],但要在载体上控制金颗粒的尺寸和分散度是很不易的~[10],而适宜载体和金粒子的高度分散对于其功能的实现至关重要~[7,11].通过简单的水热处理可以得到高比表面的TiO_2纳米管~[12,13],但是具有高催化潜能的金搀杂TiO_2… 相似文献
12.
TiO2纳米管薄膜的制备及其光散射性能 总被引:5,自引:2,他引:5
采用超声水热联合的方法, 用商品P25为原料制备出直径10 nm, 长600 nm的TiO2纳米管, 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、电子衍射(SAED)和透射电子显微镜(TEM)对产物进行表征. 用TiO2纳米管制作薄膜电极并研究其光散射性能, 结果表明TiO2纳米管可以作为染料敏化太阳能电池中薄膜工作电极内的光散射中心, 增大光能的吸收. 掺有10%小颗粒的纳米管薄膜电极具有强的光散射性能和良好的机械性能, 可用做高效率染料敏化太阳能电池的工作电极. 相似文献
13.
TiO2纳米管阵列太阳能电池薄膜材料及电池性能研究 总被引:1,自引:0,他引:1
寻找一种新型微结构的纳晶半导体以替代无规则的纳晶半导体是染料敏化太阳能领域研究的一个重要方向, 其中有序的TiO2纳米管结构是最近研究的热点. TiO2纳米管阵列作为一种新型的纳米TiO2材料, 由于其独特的阵列结构和优异的光电、氢敏特性, 引起了人们的广泛关注. 利用TiO2纳米管阵列薄膜组装的染料敏化太阳能电池体系在AM1.5条件下光电转化效率已达到5.44%. 本文就国内外关于TiO2纳米管阵列太阳能电池材料的制备方法及TiO2纳米管阵列太阳能电池存在的问题和最新研究进展进行了介绍. 相似文献
14.
在含有乙醇的氢氟酸溶液中, 用阳极氧化法制备了高度取向的TiO2纳米管阵列, 并用扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman)、紫外-可见漫反射(DRS)和荧光光谱(PL)对样品进行表征, 探讨了TiO2纳米管阵列的形成机理. 结果表明, 制备的TiO2纳米管阵列垂直生长于钛基底表面, 分布均匀, 管径约为90 nm, 管壁厚约20 nm, 管长约400~ 500 nm, 并且表现出更大的禁带宽度和良好的光致发光特性. 此外, 使用该纳米管对对氯苯酚的光电催化降解实验表明, 光电催化效率明显高于光催化和电化学过程之和, 表现出一定的光电协同作用; 施加的阳极偏压也存在一个最佳值. 相似文献
15.
16.
17.
18.
19.
ZnS-SiO2纳米复合材料的结构和性能 总被引:10,自引:1,他引:10
随着微电子学和光电子学的发展,信息处理要求存储材料具有极高的存储密度和极快的响应速度.近来理论研究表明,当半导体晶粒的尺寸小于10nm时,材料的三阶非线性极化率和快速响应速度都将提高.因而纳米复合材料可望成为一种优越的存储材料,并引起人们的广泛关注.1983年,Jain等在Cd(SSe)掺杂玻璃中观测到了较大的三阶非线性光学系数.1989年,Nogami等通过Sol-gel工艺制备了半导体掺杂的凝胶玻璃.我们也采用类似的工艺制备了CdS掺杂的凝胶玻璃,并观察了量子尺寸效应和非线性光学效应.但对这种纳米粒子掺杂形成的复合材料的结构,还缺乏了解.本文通过溶胶凝胶工艺,制备了ZnS分散在SiO_2玻璃中的纳米复合材料.采用XRD,TEM,RDF,Raman光谱对其结构进行了表征.并通过吸收光谱观察到了蓝移现象.利用简并四波混频(DFWM)方法测量了其三阶非线性光学系数.最后讨论了结构对性能的影响. 相似文献
20.
Zn掺杂TiO2纳米管电极制备及其对五氯酚的光电催化降解 总被引:2,自引:0,他引:2
采用阳极氧化法在Ti基底上制备TiO2纳米管电极, 再通过浸渍法制备出Zn掺杂TiO2纳米管电极. 采用场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、电子探针显微分析(EPMA)、紫外-可见漫反射吸收光谱(DRS)技术对其进行表征, 电极表面分布有均匀的纳米管状阵列, 管径50~90 nm, 管长约200 nm, 管壁厚约为15 nm, 锐钛矿型TiO2, Zn元素以ZnO小团簇形态沉积在TiO2纳米管电极表面, 与TiO2纳米管电极相比起始吸收带边红移近20 nm. 分别使用Zn掺杂TiO2纳米管电极和TiO2纳米管电极对相同五氯酚(PCP)溶液(初始浓度为20 mg/L, 电解质Na2SO4浓度为0.01 mol/L, 初始pH为7.03)进行光电催化降解120 min. 结果表明: 在紫外光(400 μW/cm2)或可见光(4500 μW/cm2)的照射下, Zn掺杂TiO2纳米管电极对PCP的降解率分别为73.5%和18.4%, 而TiO2纳米管电极对PCP的降解率分别为48.5%和3.2%. Zn掺杂TiO2纳米管电极光电催化降解PCP的准一级反应动力学常数分别为TiO2纳米管电极的2.0倍和5.8倍, 且其光电催化性能与Zn掺杂浓度有关,最优掺杂浓度为0.909%. Zn掺杂TiO2纳米管电极的稳定性良好. 相似文献