首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 812 毫秒
1.
由广义梯度近似的密度泛函理论,计算了LiFePO4在Mg掺杂前后的电子结构.结果表明,Fe-O键是较弱的共价键;而P-O键的键级大,键长短,形成的是很强的共价键.掺杂Mg后,键中的共价成分有些减弱.在总态密度中费米能级附近的价带和导带,主要来自于Fe的3d态电子.掺杂物的能隙明显小于纯LiFePO4的能隙,并且掺杂后,发生了红移现象,从而表明掺杂Mg可以提高LiFePO4的导电性能.  相似文献   

2.
采用基于密度泛函理论的第一性计算方法,研究了LiFePO4中Li、P位替位掺杂Na、As时的电子结构. 计算表明:少量掺杂并未整体改变LiFePO4电子结构,但可以调整体系中占主导地位的PO键、FeO键之间的相互作用,从而改善材料的特性;共掺杂体系的带隙宽度减小、嵌锂电位略微下降,掺入的Na、As未阻塞锂离子的一维通道.  相似文献   

3.
采用体相掺杂法对LiFePO4进行改性,采用Mg对LiFePO4进行掺杂,研究Mg的掺杂量对LiFePO4材料电化学性能的影响.研究结果表明,经掺杂改性后的LiFe1-xMgxPO4(x=0.01,0.05,0.10,0.15)材料的充放电容量和循环性能均有所提高,其中,样品LiFe0.85Mg0.15PO4的性能最佳,其首次放电容量为125.6 mA·h/g,循环6次后容量仍达123.0 mA·h/g;Mg部分取代LiFePO4材料中的Fe后所得材料的电子电导率提高了1×106倍,从而提高了材料的电化学性能.  相似文献   

4.
基于周期性密度泛函理论,本文研究了Fe在锐钛矿TiO2(001)面吸附、替位掺杂及晶隙掺杂,以及N在Fe/TiO2(001)稳定结构上的吸附及掺杂.讨论了不同掺杂后晶体稳定结构、形成能、能带结构及态密度的变化.为与表面氧空位进行对比,计算了氧空位存在下TiO2(001)面的能带结构.通过形成能的比较可以发现,Fe原子更倾向于掺杂在晶体(001)表面晶隙,N则倾向于吸附在Fe顶部,并形成稳定的N-Fe键.通过对电子结构的分析发现:稳定的N-Fe共吸附形式,使得TiO2呈现出金属性,有利于其催化氧化性能的提升.  相似文献   

5.
采用密度泛函理论下的第一性原理平面波赝势方法,结合广义梯度近似,对Mg掺杂闪锌矿Zn Se的MgxZn1-xSe电子结构和光学性质进行了研究.结果表明:MgxZn1-xSe是一种直接带隙半导体,其价带顶主要由Se-4p态电子构成,位置基本保持不变;导带底主要由Se-4s态电子和Zn-4s态电子共同决定,并且随着掺杂浓度的增大向高能区方向移动,其能隙宽度随掺杂量的增大而变宽,吸收光谱出现蓝移,计算结果与现有文献符合得很好.  相似文献   

6.
基于密度泛函理论,使用自洽投影缀加平面波方法,计算了对苯二甲酸 锌配合物(MOF-5)的体态几何与电子结构。经理论预测MOF 5是一种直接能隙半导体,价带极大值(VBM) 与导带极小值(CBM)都位于位于G(0, 0, 0)点,其直接能隙约为3.17eV,间接能隙约为3.18eV。通过对优化后的MOF-5晶体结构的分析,发现MOF-5晶体结构中的苯环沿着对位方向受到拉伸,同时沿着垂直于对位方向受到压缩,说明成键过程中对苯二甲酸分子的苯环发生了一定的变形。同时对优化后的MOF-5晶体进行总态密度图、分波态密度图及Mulliken电荷分析,发现Zn—O1键的键能大于Zn—O2键,Zn原子的4p轨道有电子分布,即Zn的s、p和d轨道均参与了成键。  相似文献   

7.
为研究过渡金属掺杂对氢化物铁磁性的影响,采用密度泛函理论的第一性原理平面波赝势方法,以Mg H2为基本材料,以过渡金属(V、Cr、Mn、Fe、Co和Ni)元素替代2×1×2超晶胞中的Mg原子建立掺杂模型Mg1-xMxH2(M=V、Cr、Mn、Fe、Co和Ni),并计算模型自旋极化的磁性、能带结构和态密度等性质.结果表明:与Mg H2中的Mg—H键相比,过渡金属M(M=V、Cr、Mn、Fe、Co和Ni)—H间的相互作用明显增强,造成Mg—H间强烈的离子键和部分共价键的相互作用随着过渡金属的掺杂而被削弱.掺杂体系中,V和Cr是受主杂质,而Mn、Co和Ni体系中,自旋极化率相对较低,且穿过费米能级的子带的斜率较低.研究表明过渡金属(V、Cr、Mn、Co和Ni)掺杂的Mg H2体系虽然可以导电,但电导率较小,具有比较稳定的半金属性.  相似文献   

8.
运用第一性原理的LDA+U(U_(Ti-3d)=7eV,U_(O-2p)=4eV)方法研究了N掺杂金红石TiO_2的电子结构和光学吸收性质。研究表明N元素的掺杂可以降低TiO_2的禁带宽度并在带隙中引入杂质能级。杂质能级主要由O-2p轨道和N-2p轨道之间的耦合形成。杂质能级的引入以及带隙宽度的降低可以增加TiO_2对可见光的响应,并提高Ti O2的光催化活性。费米能级附近的态密度由O-2p轨道和N-2p轨道之间的耦合形成π键构成,电子占据π键态和空的σ键态能级差大约为0.4 eV,可使N掺杂Ti O2的光学吸收边落在在红外区域,即发生了所谓的光学吸收边的红移现象。  相似文献   

9.
采用基于密度泛函理论的从头算平面波超软赝势方法,研究金属Fe、Y单掺杂对斜锆石相TaON电子结构和光学性质的影响.研究结果表明,掺杂后TaON电子结构和光学性质的变化主要源于杂质原子d态电子的贡献.Fe、Y掺杂均在禁带中引入了新的杂质能级,并使费米能级处的态密度值有所增加,带隙宽度有所减小,从而导致吸收光谱的吸收边沿发生明显的红移,说明Fe、Y掺杂对于提高TaON的可见光催化性能和电输运性能起到很好的促进作用.两相比较,就提高光催化性能和电输运性能来说,Fe掺杂的效果优于Y掺杂.  相似文献   

10.
采用第一性原理对Au在Fe掺杂石墨烯表面的吸附特性进行研究,计算掺杂Fe前后石墨烯对Au的吸附能以及石墨烯的局部态密度和电荷分布。结果表明:掺杂Fe增强了Au在石墨烯表面的吸附能,提高了Au与石墨烯间的电荷转移。掺杂Fe后,Fe与Au间形成了共价键,Au与石墨烯间由物理吸附转变为化学吸附。此外,自旋极化计算结果显示Fe掺杂石墨烯-Au体系中自旋向上态密度和自旋向下态密度关于费米能级对称,说明Fe掺杂不会使体系产生磁矩而影响材料性能。此类掺杂有望改善石墨烯载Au纳米颗粒催化剂的催化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号