首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of cells to form cell contacts, adhere to the extracellular matrix, change morphology, and migrate is essential for development, wound healing, metastasis, cell survival and the immune response. These events depend on the binding of integrin to the extracellular matrix, and assembly of focal adhesions, which are complexes comprising scaffolding and signalling proteins organized by adhesion to the extracellular matrix. Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) regulates interactions between these proteins, including the interaction of vinculin with actin and talin. The binding of talin to beta-integrin is strengthened by PtdIns(4,5)P(2), suggesting that the basis of focal adhesion assembly is regulated by this lipid mediator. Here we show that the type I phosphatidylinositol phosphate kinase isoform-gamma 661 (PIPKI gamma 661), an enzyme that makes PtdIns(4,5)P(2), is targeted to focal adhesions by an association with talin. PIPKI gamma 661 is tyrosine phosphorylated by focal adhesion associated kinase signalling, increasing both the activity of phosphatidylinositol phosphate kinase and its association with talin. This defines a mechanism for spatial generation of PtdIns(4,5)P(2) at focal adhesions.  相似文献   

2.
Sequence and domain structure of talin   总被引:45,自引:0,他引:45  
D J Rees  S E Ades  S J Singer  R O Hynes 《Nature》1990,347(6294):685-689
Talin is a high-molecular-weight cytoskeletal protein concentrated at regions of cell-substratum contact and, in lymphocytes, at cell-cell contacts. Integrin receptors are involved in the attachment of adherent cells to extracellular matrices and of lymphocytes to other cells. In these situations, talin codistributes with concentrations of integrins in the cell surface membrane. Furthermore, in vitro binding studies suggest that integrins bind to talin, although with low affinity. Talin also binds with high affinity to vinculin, another cytoskeletal protein concentrated at points of cell adhesion. Finally, talin is a substrate for the Ca2(+)-activated protease, calpain II, which is also concentrated at points of cell-substratum contact. To learn more about the structure of talin and its involvement in transmembrane connections between extracellular adhesions and the cytoskeleton, we have cloned and sequenced murine talin. We describe a model for the structure of talin based on this sequence and other data. Homologies between talin and other proteins define a novel family of submembranous cytoskeleton-associated proteins all apparently involved in connections to the plasma membrane.  相似文献   

3.
Nanoscale architecture of integrin-based cell adhesions   总被引:3,自引:0,他引:3  
Cell adhesions to the extracellular matrix (ECM) are necessary for morphogenesis, immunity and wound healing. Focal adhesions are multifunctional organelles that mediate cell-ECM adhesion, force transmission, cytoskeletal regulation and signalling. Focal adhesions consist of a complex network of trans-plasma-membrane integrins and cytoplasmic proteins that form a?<200-nm plaque linking the ECM to the actin cytoskeleton. The complexity of focal adhesion composition and dynamics implicate an intricate molecular machine. However, focal adhesion molecular architecture remains unknown. Here we used three-dimensional super-resolution fluorescence microscopy (interferometric photoactivated localization microscopy) to map nanoscale protein organization in focal adhesions. Our results reveal that integrins and actin are vertically separated by a ~40-nm focal adhesion core region consisting of multiple protein-specific strata: a membrane-apposed integrin signalling layer containing integrin cytoplasmic tails, focal adhesion kinase and paxillin; an intermediate force-transduction layer containing talin and vinculin; and an uppermost actin-regulatory layer containing zyxin, vasodilator-stimulated phosphoprotein and α-actinin. By localizing amino- and carboxy-terminally tagged talins, we reveal talin's polarized orientation, indicative of a role in organizing the focal adhesion strata. The composite multilaminar protein architecture provides a molecular blueprint for understanding focal adhesion functions.  相似文献   

4.
An interaction between vinculin and talin   总被引:4,自引:0,他引:4  
K Burridge  P Mangeat 《Nature》1984,308(5961):744-746
In cultured fibroblasts, microfilament bundles terminate at adhesion plaques (focal contacts), the specialized regions where the cells adhere most tightly to the underlying substrate. Vinculin is a protein concentrated in adhesion plaques and has been suggested as a possible link between the ends of the bundles of actin filaments and the plasma membrane. If vinculin is one protein in a chain of attachment between the bundles of microfilaments and the plasma membrane, it is important to identify other components which interact with vinculin. We have recently discovered a new protein in adhesion plaques which we refer to as talin. Here we show that talin binds to vinculin, which suggests that talin may be involved with vinculin in the attachment of microfilament bundles to the plasma membrane at the adhesion plaques.  相似文献   

5.
Structural basis for vinculin activation at sites of cell adhesion   总被引:1,自引:0,他引:1  
Vinculin is a highly conserved intracellular protein with a crucial role in the maintenance and regulation of cell adhesion and migration. In the cytosol, vinculin adopts a default autoinhibited conformation. On recruitment to cell-cell and cell-matrix adherens-type junctions, vinculin becomes activated and mediates various protein-protein interactions that regulate the links between F-actin and the cadherin and integrin families of cell-adhesion molecules. Here we describe the crystal structure of the full-length vinculin molecule (1,066 amino acids), which shows a five-domain autoinhibited conformation in which the carboxy-terminal tail domain is held pincer-like by the vinculin head, and ligand binding is regulated both sterically and allosterically. We show that conformational changes in the head, tail and proline-rich domains are linked structurally and thermodynamically, and propose a combinatorial pathway to activation that ensures that vinculin is activated only at sites of cell adhesion when two or more of its binding partners are brought into apposition.  相似文献   

6.
A Horwitz  K Duggan  C Buck  M C Beckerle  K Burridge 《Nature》1986,320(6062):531-533
Many observations suggest the presence of transmembrane linkages between the cytoskeleton and the extracellular matrix. In fibroblasts both light and electron microscopic observations reveal a co-alignment between actin filaments at the cell surface and extracellular fibronectin. These associations are seen at sites of cell matrix interaction, frequently along stress fibres and sometimes where these bundles of microfilaments terminate at adhesion plaques (focal contacts). Non-morphological evidence also indicates a functional linkage between the cytoskeleton and extracellular matrix. Addition of fibronectin to transformed cells induces flattening of the cells and a reorganization of the actin cytoskeleton, with the concomitant appearance of arrays of stress fibres. Conversely, disruption of the actin cytoskeleton by treatment with cytochalasin B leads to release of fibronectin from the cell surface. As yet, there is no detailed knowledge of the molecules involved in this transmembrane linkage, although several proteins have been suggested as candidates in the chain of attachment between bundles of actin filaments and the cytoplasmic face of the plasma membrane: these include vinculin, alpha-actinin and talin, each one having been identified at regions where bundles of actin filaments interact with the plasma membrane and underlying cell-surface fibronectin. Recently, the cell-substrate attachment (CSAT) antigen has been identified as a plasma membrane receptor for fibronectin, raising the possibility that this glycoprotein complex may serve as a bridge between fibronectin and one or more of the underlying cytoskeletal components mentioned. Here we have investigated the interaction of the purified CSAT antigen with these cytoskeletal components, and we demonstrate an interaction specifically between the CSAT antigen and talin.  相似文献   

7.
P Burn  A Rotman  R K Meyer  M M Burger 《Nature》1985,314(6010):469-472
The interaction of the cytoskeleton with plasma membranes may be mediated by vinculin, alpha-actinin and other proteins; alpha-actinin can interact specifically with model membranes only if they contain diacylglycerol and palmitic acid. On stimulation of platelets by thrombin, which leads to a reorganization of the cytoskeleton, diacylglycerol is produced rapidly, simultaneously with the disappearance of phosphatidylinositol. One important function of the diacylglycerol produced in platelets may be the activation of the Ca2+-and phospholipid-dependent protein kinase C. We show here that, in the presence of diacylglycerol and palmitic acid, a supramolecular complex between alpha-actinin and actin is formed in vitro. In the electron microscope, this complex displays substructures similar to those of microfilament bundles in vivo. Furthermore, such alpha-actinin/lipid complexes can also be formed in situ during the stimulation of blood platelet aggregation. Thus, alpha-actinin may be one of the proteins directly involved in structures connecting the cytoskeleton to cell membranes.  相似文献   

8.
F Ungar  B Geiger  A Ben-Ze'ev 《Nature》1986,319(6056):787-791
Recent studies have demonstrated the fundamental role of cell-substrate contacts and changes in cell shape in the regulation of cell growth, motility and differentiation, but the molecular basis for these phenomena is poorly understood. Because of the involvement of cytoskeletal networks in cell morphogenesis and contact formation, it is of interest that the expression of genes encoding several cytoskeletal proteins is markedly affected by changes in cell contacts and configuration. Because most of these phenomena involve changes in the form, extent or topology of cell contacts, we sought to determine whether the expression of components directly involved in the formation of cell-cell or cell-substrate contacts is affected by the respective cellular interactions. A suitable candidate for such analysis is vinculin, a cytoskeletal protein of relative molecular mass (Mr) 130,000 (130K), which is localized in focal contacts and intercellular adherens junctions. The assembly of vinculin into a membrane-bound junctional plaque seems to be one of the earliest cellular responses to contact with exogenous substrates, leading to the subsequent local assembly of the actin-rich microfilament bundles. Here we report on the regulation of vinculin synthesis in response to environmental conditions that affect cell shape and contacts.  相似文献   

9.
T O'Halloran  M C Beckerle  K Burridge 《Nature》1985,317(6036):449-451
During platelet activation there is a major reorganization in the platelet cytoskeleton that accompanies a rapid change in platelet shape. Many of the events associated with activation are attributed to a rise in calcium concentration within the platelet cytoplasm. One direct consequence of the elevated calcium is the activation of a calcium-dependent protease that cleaves a major platelet protein of relative molecular mass (Mr) approximately 235,000 (235K) to 200K. This protein, P235, has been purified and reported to interact with actin, but the significance of the proteolytic cleavage is unknown. Talin, a cytoskeletal protein in smooth muscle and fibroblasts, binds vinculin and, together with vinculin, is localized in fibroblasts at sites of actin-membrane attachment. Talin and P235 have similar purification procedures, sedimentation coefficients and Stokes' radii (ref. 6 and Molony et al., unpublished observations). Of particular significance, talin is readily cleaved by proteases from approximately 215K to a fragment of approximately 190K. Given these similarities we have investigated the possible relationship between these proteins. Here we demonstrate that platelet P235 is recognized by anti-talin antibody and that it binds vinculin. Both proteins are cleaved in vitro by the calcium-activated protease to yield similar fragments. We conclude that P235 corresponds to the platelet form of talin.  相似文献   

10.
Membrane phosphoinositides control a variety of cellular processes through the recruitment and/or regulation of cytosolic proteins. One mechanism ensuring spatial specificity in phosphoinositide signalling is the targeting of enzymes that mediate their metabolism to specific subcellular sites. Phosphatidylinositol phosphate kinase type 1 gamma (PtdInsPKI gamma) is a phosphatidylinositol-4-phosphate 5-kinase that is expressed at high levels in brain, and is concentrated at synapses. Here we show that the predominant brain splice variant of PtdInsPKI gamma (PtdInsPKI gamma-90) binds, by means of a short carboxy-terminal peptide, to the FERM domain of talin, and is strongly activated by this interaction. Talin, a principal component of focal adhesion plaques, is also present at synapses. PtdInsPKI gamma-90 is expressed in non-neuronal cells, albeit at much lower levels than in neurons, and is concentrated at focal adhesion plaques, where phosphatidylinositol-4,5-bisphosphate has an important regulatory role. Overexpression of PtdInsPKI gamma-90, or expression of its C-terminal domain, disrupts focal adhesion plaques, probably by local disruption of normal phosphoinositide balance. These findings define an interaction that has a regulatory role in cell adhesion and suggest new similarities between molecular interactions underlying synaptic junctions and general mechanisms of cell adhesion.  相似文献   

11.
Ford MG  Jenni S  Nunnari J 《Nature》2011,477(7366):561-566
Dynamin-related proteins (DRPs) are multi-domain GTPases that function via oligomerization and GTP-dependent conformational changes to play central roles in regulating membrane structure across phylogenetic kingdoms. How DRPs harness self-assembly and GTP-dependent conformational changes to remodel membranes is not understood. Here we present the crystal structure of an assembly-deficient mammalian endocytic DRP, dynamin 1, lacking the proline-rich domain, in its nucleotide-free state. The dynamin 1 monomer is an extended structure with the GTPase domain and bundle signalling element positioned on top of a long helical stalk with the pleckstrin homology domain flexibly attached on its opposing end. Dynamin 1 dimer and higher order dimer multimers form via interfaces located in the stalk. Analysis of these interfaces provides insight into DRP family member specificity and regulation and provides a framework for understanding the biogenesis of higher order DRP structures and the mechanism of DRP-mediated membrane scission events.  相似文献   

12.
Gröbner G  Burnett IJ  Glaubitz C  Choi G  Mason AJ  Watts A 《Nature》2000,405(6788):810-813
Photo-isomerization of the 11-cis retinal chromophore activates the mammalian light-receptor rhodopsin, a representative member of a major superfamily of transmembrane G-protein-coupled receptor proteins (GPCRs) responsible for many cell signal communication pathways. Although low-resolution (5 A) electron microscopy studies confirm a seven transmembrane helix bundle as a principal structural component of rhodopsin, the structure of the retinal within this helical bundle is not known in detail. Such information is essential for any theoretical or functional understanding of one of the fastest occurring photoactivation processes in nature, as well as the general mechanism behind GPCR activation. Here we determine the three-dimensional structure of 11-cis retinal bound to bovine rhodopsin in the ground state at atomic level using a new high-resolution solid-state NMR method. Significant structural changes are observed in the retinal following activation by light to the photo-activated M(I) state of rhodopsin giving the all-trans isomer of the chromophore. These changes are linked directly to the activation of the receptor, providing an insight into the activation mechanism of this class of receptors at a molecular level.  相似文献   

13.
Architecture of the Mediator head module   总被引:1,自引:0,他引:1  
  相似文献   

14.
The interaction of nelin, a cardiac-specific expressed protein of human novel gene nelin, with F-actin was studied by both F-actin cosedimentation in vitro and colocalization assays. The results showed that nelin is a new F-actin binding protein and is colocolized with F-actin in cytoplasm of cells. Three new nelin binding proteins, filamin C subtype, titin N2B subtype and inter-alpha trypsin inhibitor heavy chain precursor (ITIH), were identified from human heart cDNA library using yeast two-hybrid screening. The binding activity of filamin C with nelin was confirmed by coimmunoprecipitation. Filamin C binds to nelin through its C-terminal region. It is indicated that nelin is a cytoskeleton associated protein and acts as a membrane-cytoskeleton associated protein involved in the formation of focal adhesions.  相似文献   

15.
Jiang G  Giannone G  Critchley DR  Fukumoto E  Sheetz MP 《Nature》2003,424(6946):334-337
Mechanical forces on matrix-integrin-cytoskeleton linkages are crucial for cell viability, morphology and organ function. The production of force depends on the molecular connections from extracellular-matrix-integrin complexes to the cytoskeleton. The minimal matrix complex causing integrin-cytoskeleton connections is a trimer of fibronectin's integrin-binding domain FNIII7-10 (ref. 4). Here we report a specific, molecular slip bond that was broken repeatedly by a force of 2 pN at the cellular loading rate of 60 nm x s(-1); this occurred with single trimer beads but not with monomer. Talin1, which binds to both integrins and actin filaments in vitro, is required for the 2-pN slip bond and rapid cytoskeleton binding. Further, inhibition of fibronectin binding to alpha(v)beta3 and deletion of beta3 markedly decreases the 2-pN force peak. We suggest that talin1 initially forms a molecular slip bond between closely packed fibronectin-integrin complexes and the actin cytoskeleton, which can apply a low level of force to fibronectin until many bonds form or a signal is received to activate a force response.  相似文献   

16.
D Suck  C Oefner 《Nature》1986,321(6070):620-625
Bovine pancreatic deoxyribonuclease I (DNase I), an endonuclease that degrades double-stranded DNA in a nonspecific but sequence-dependent manner, has been used as a biochemical tool in various reactions, in particular as a probe for the structure of chromatin and for the helical periodicity of DNA on the nucleosome and in solution. Limited digestion by DNase I, termed DNase I 'footprinting', is routinely used to detect protected regions in DNA-protein complexes. Recently, we have solved the three-dimensional structure of this glycoprotein (relative molecular mass 30,400) by X-ray structure analysis at 2.5 A resolution and have subsequently refined it crystallographically at 2.0 A. Based on the refined structure and the binding of Ca2+-thymidine 3',5'-diphosphate (Ca-pTp) at the active site, we propose a mechanism of action and present a model for the interaction of DNase I with double-stranded DNA that involves the binding of an exposed loop region in the minor groove of B-DNA and electrostatic interactions of phosphates from both strands with arginine and lysine residues on either side of this loop. We explain DNase I cleavage patterns in terms of this model and discuss the consequences of the extended DNase I-DNA contact region for the interpretation of DNase I footprinting results.  相似文献   

17.
SR Tzeng  CG Kalodimos 《Nature》2012,488(7410):236-240
How the interplay between protein structure and internal dynamics regulates protein function is poorly understood. Often, ligand binding, post-translational modifications and mutations modify protein activity in a manner that is not possible to rationalize solely on the basis of structural data. It is likely that changes in the internal motions of proteins have a major role in regulating protein activity, but the nature of their contributions remains elusive, especially in quantitative terms. Here we show that changes in conformational entropy can determine whether protein-ligand interactions will occur, even among protein complexes with identical binding interfaces. We have used NMR spectroscopy to determine the changes in structure and internal dynamics that are elicited by the binding of DNA to several variants of the catabolite activator protein (CAP) that differentially populate the inactive and active DNA-binding domain states. We found that the CAP variants have markedly different affinities for DNA, despite the CAP?DNA-binding interfaces being essentially identical in the various complexes. Combined with thermodynamic data, the results show that conformational entropy changes can inhibit the binding of CAP variants that are structurally poised for optimal DNA binding or can stimulate the binding activity of CAP variants that only transiently populate the DNA-binding-domain active state. Collectively, the data show how changes in fast internal dynamics (conformational entropy) and slow internal dynamics (energetically excited conformational states) can regulate binding activity in a way that cannot be predicted on the basis of the protein's ground-state structure.  相似文献   

18.
The interactions between zinc-free insulin and vanadium compounds, NaVO3, VO(acac)2 and VO(ma)2, have been investigated by fluorescence spectroscopy, circular dichroism (CD) and Fourier-transformed infrared (FT-IR) spectroscopy. The results showed that binding of vanadium compounds produced a static quenching of the intrinsic fluorescence of insulin. The apparent association constants were determined to be (0.17±0.01)×104 L*mol-1 for NaVO3, (2.8±0.2)×104 L*mol-1 for VO(acac)2, and (4.0±0.1)×104 L*mol-1 for VO(ma)2, respectively. The light scattering intensity of insulin decreased upon incubation with the vanadium compounds, suggesting the disaggregation of insulin. The attenuation of the band at 273 nm of insulin CD spectra also supported the disaggregation of insulin observed above. A new band at 1650~1653 cm-1 appeared in the FT-IR spectra of insulin upon incubation with the vanadium compounds, indicating the formation of an α-helix structure at B (9-19) motif. This α-helix structure suggests a structural change of insulin from an extended conformation (T state) to a helical conformation (R state), which is essential for binding of insulin to its receptor. In conclusion, binding of vanadium compounds results in conformational changes and disaggregation of insulin. These changes might account for the enhancement of binding affinity for insulin to its receptor in the presence of vanadium compounds.  相似文献   

19.
All members of the diverse myosin superfamily have a highly conserved globular motor domain that contains the actin- and nucleotide-binding sites and produces force and movement. The light-chain-binding domain connects the motor domain to a variety of functionally specialized tail domains and amplifies small structural changes in the motor domain through rotation of a lever arm. Myosins move on polarized actin filaments either forwards to the barbed (+) or backwards to the pointed (-) end. Here, we describe the engineering of an artificial backwards-moving myosin from three pre-existing molecular building blocks. These blocks are: a forward-moving class I myosin motor domain, a directional inverter formed by a four-helix bundle segment of human guanylate-binding protein-1 and an artificial lever arm formed by two alpha-actinin repeats. Our results prove that reverse-direction movement of myosins can be achieved simply by rotating the direction of the lever arm 180 degrees.  相似文献   

20.
Group A Streptococcus tissue invasion by CD44-mediated cell signalling.   总被引:5,自引:0,他引:5  
C Cywes  M R Wessels 《Nature》2001,414(6864):648-652
Streptococcus pyogenes (also known as group A Streptococcus, GAS), the agent of streptococcal sore throat and invasive soft-tissue infections, attaches to human pharyngeal or skin epithelial cells through specific recognition of its hyaluronic acid capsular polysaccharide by the hyaluronic-acid-binding protein CD44 (refs 1, 2). Because ligation of CD44 by hyaluronic acid can induce epithelial cell movement on extracellular matrix, we investigated whether molecular mimicry by the GAS hyaluronic acid capsule might induce similar cellular responses. Here we show that CD44-dependent GAS binding to polarized monolayers of human keratinocytes induced marked cytoskeletal rearrangements manifested by membrane ruffling and disruption of intercellular junctions. Transduction of the signal induced by GAS binding to CD44 on the keratinocyte surface involved Rac1 and the cytoskeleton linker protein ezrin, as well as tyrosine phosphorylation of cellular proteins. Studies of bacterial translocation in two models of human skin indicated that cell signalling triggered by interaction of the GAS capsule with CD44 opened intercellular junctions and promoted tissue penetration by GAS through a paracellular route. These results support a model of host cytoskeleton manipulation and tissue invasion by an extracellular bacterial pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号