首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 531 毫秒
1.
研究了并联式混合动力系统的电机模拟发动机倒拖再生制动.当整车处于滑行工况时,离合器断开,处在发电模式的电机提供负转矩来模拟发动机倒拖转矩对蓄电池充电,从而回收原本由发动机倒拖制动消耗的整车滑行能量.考虑电机发电效率和蓄电池充电效率,提出以进入蓄电池的实际电能最大化为目标的电机转矩优化控制算法,并确定了电机最优化转矩和机械式自动变速箱最优化档位控制规律.仿真结果表明:运用电机转矩优化控制算法的电机模拟发动机倒拖再生制动,蓄电池电荷状态(SOC)的增幅明显提高.  相似文献   

2.
针对现有混合动力汽车控制方法存在功率损失大、系统效率低、润滑条件恶化等问题,提出一种基于系统效率最优的混合动力汽车控制方法.首先分析动力系统各部件的结构与效率特性,制定出所有可能的工作模式,然后构建出各模式下的效率评估方程,依据需求扭矩和蓄电池荷电状态SOC,得出系统最高效率下对应的发动机转矩和电机转矩分配情况,以控制发动机和电机相应转矩输出.仿真实验结果表明,该方法使整个动力系统总体效率最高,减少了系统功率损失,降低了整车的燃油消耗,并在一定程度上保障了润滑条件和传动部件的使用寿命,取得了良好的效果.  相似文献   

3.
一种新型车用开关磁阻起动/发电一体机系统   总被引:5,自引:0,他引:5  
介绍了一种新型的汽车用开关磁阻电机起动/发电一体化系统,该系统可取代传统汽车中的分体式起动机和发电机.介绍了开关磁阻电机工作在各种状态的原理,以及相应的控制算法.采用一台1 kW6/4结构开关磁阻电机作为试验样机,以TMs320F240型DSP和EPM7128S型CPLD构成数字控制器,可实现汽车的起动、发电等功能一体化.在控制策略上,起动时以获得足够大的电磁转矩为优化目标,发电时则根据蓄电池的荷电情况自动选择恒流充电、恒压充电和浮充电.对系统进行了计算机仿真和试验研究,结果验证了硬件设计和控制策略的可行性和有效性.  相似文献   

4.
为改善某新型串并联插电式混合动力系统双电机纯电动至并联驱动模式切换品质,同时确保不同车辆行驶状态及驾驶员输入下模式切换策略的适应性能,提出了平顺性起机和动力性起机概念,设计了自适应模式切换优化控制策略。首先,建立该串并联混合动力系统动力学模型,并对其双电机纯电动至并联驱动模式切换过程进行分析,确定模式切换不同阶段控制目标及控制策略;其次,以车辆驾驶平顺性和发动机起动时间为优化指标,通过动态规划求解发动机最优拖转转速曲线,提出一种发动机起动模型预测优化控制策略,在线计算离合器滑摩转矩以拖转发动机跟踪目标最优转速曲线,并通过电机补偿输出端转矩波动。离线仿真及硬件在环台架试验结果表明,所开发的自适应模式切换控制策略能够满足不同的驾驶需求,并具有较好的驾驶平顺性。  相似文献   

5.
基于半实物仿真平台,对增程器起停及切换过程控制策略进行了优化.结果表明:倒拖转矩增大和倒拖终了转速提高后,增程器起动时间降至1.01s;暖机起动过程发动机颗粒排放数量浓度峰值达2.0×10~8个·cm~(-3);停机过程通过发电机加载转矩实现负载停机,转速波动得以明显抑制;采用快速起动和增大增程器输出电功率上升率限值后,整车动力性有所改善;切换过程发动机颗粒排放数量浓度峰值达2.5×10~8个·cm~(-3);发动机调速模式相对发电机调速模式,增程器电功率输出较平缓,但发动机更易偏离最佳油耗曲线.  相似文献   

6.
为实现混合动力电动汽车纯电动模式与发动机工作模式平顺地切换,依据切换前后驱动转矩相等的原则,提出一种新的电机转矩算法.该算法根据CVT的速比控制规律、车速、节气门开度得出发动机的伪目标转速;根据发动机输出特性、节气门开度和伪发动机转速,得出发动机输出转矩,由此推导出电机输出转矩.仿真结果表明:模式切换前后整车驱动转矩基...  相似文献   

7.
并联混合动力客车模式切换过程控制研究   总被引:1,自引:1,他引:0  
针对单轴并联混合动力客车结合离合器的模式切换,设计了发动机已启动和未启动时模式切换的控制策略.对于发动机未启动的模式切换,考虑离合器滑磨功和驾驶员需求,提出了在挡启动发动机和空挡启动发动机的控制策略.在转矩恢复时利用电机对发动机转矩进行补偿,考虑驾驶员需求、电池状态和整车控制策略,制定电机补偿发动机转矩的策略. 通过台架和实车试验验证了策略的可行性与优越性.   相似文献   

8.
基于全浮式ISG电机的混合动力轿车启动过程   总被引:1,自引:0,他引:1  
开发了基于全浮式ISG电机的单轴并联式混合动力轿车,分析了整车系统结构和发动机启动控制策略.为了验证所开发的混合动力车相对传统车的优点,在电机试验台架上对ISG电机进行了速度特性和效率特性试验,在混合动力试验台架上进行了混合动力车和传统车的启动喷油脉宽以及HC排放对比试验.试验结果表明:ISG电机在发电和电动模式下,均有较高的输出转矩及效率,和传统车相比,混合动力车启动时间短,没有启动过浓喷油现象,HC排放量约降低21%.  相似文献   

9.
起动电机是构成混合动力汽车智能起停系统的重要部件.为了研究该系统中的电机输出转矩,利用发动机台架,啮合模拟台架,驱动模拟台架进行了实验,得到了起动电机的转矩输出特性,并验证了两个模拟台架试验的可靠性.随后以发动机台架试验结果为基础,构建了神经网络模型,能够很好的预测起动电机的输出转矩,克服了常规模拟仿真中数学模型不准确的问题,为进一步利用神经网络研究起停系统奠定了基础.  相似文献   

10.
并联混合动力汽车的模糊转矩控制策略   总被引:7,自引:0,他引:7  
提出了一种新的并联混合动力汽车(PHEV)模糊转矩控制策略(FTCS)及其设计方法.以并联混合动力系统的工作模式为基础,利用请求转矩与发动机最佳转矩的比值和电池电荷状态(SOC)为输入、电机归一化转矩指令为输出,构建了有22条规则的模糊推理器,用以确定发动机和电机的最佳转矩分配,实现系统的总体能量转换效率最高.仿真结果表明,与采用精确门限参数的策略相比,FTCS的燃油经济性有较大提高,并能更好地控制电池SOC在工作区变化.  相似文献   

11.
并联式混合动力汽车的实时控制策略优化   总被引:2,自引:0,他引:2  
分析了并联式混合动力汽车的能量流动情况,建立了便于进行扭矩分配计算的驱动系统简化模型。将电池充放电过程中消耗的能量等效为一定的油耗,以最少等效油耗为目标函数,建立了实时控制策略。针对FUDS驾驶循环,计算得到了最少油耗的实时扭矩分配方案.结果表明,该实时控制策略能有效的降低车辆的燃油消耗,优化发动机的工作点。  相似文献   

12.
针对搭载CVT的插电式混合动力轿车,设计了一种基于动力源外特性曲线和驾驶员踏板操作信号的需求转矩解析方法,在此基础上提出驱动和制动工况下基于瞬时经济性成本最低的能量管理策略,该策略以需求转矩、车速和电池SOC为状态变量,以发动机节气门开度、电机转矩、CVT速比为控制变量.进一步研究了电量消耗阶段有无发动机单独驱动模式对整车能耗经济性的影响.通过自行搭建的前向模型进行仿真,结果表明,电量消耗阶段无发动机单独驱动模式的控制策略具有更强的综合性经济优势.  相似文献   

13.
通过仿真对四轮驱动混合动力汽车的能量控制策略进行分析研究,提出以扭矩作为控制策略中的主要控制变量,并根据发动机万有特性、汽车车速、电池稳态特性等因素,将整车扭矩需求合理地分配给内燃机和电机.根据车辆的动力需求,确立了动力系统各元件的匹配参数,并使用Matlab/Simulink仿真软件建立前向式混合动力车模型进行离线仿真计算.仿真结果表明,此能量管理策略可以进行合理的动力分配,并达到一定的动力系统效率.  相似文献   

14.
为分析电驱动车辆发动机和动力电池组混合驱动的动态特性,采用等效阻抗法建立永磁同步发电机、整流桥和动力电池组在发电机转子d-q坐标系中的统一动态电路模型,并运用状态方程和直流水阻负载对模型进行了仿真和实验验证.模拟车辆转向工况,仿真得出电池组对减小发动机转速和转矩超调量,平滑直流母线电压剧烈变化效果显著,并能发挥助力和吸收再生制动能量的能力.  相似文献   

15.
为分析电驱动车辆发动机和动力电池组混合驱动的动态特性,采用等效阻抗法建立永磁同步发电机、整流桥和动力电池组在发电机转子d-q坐标系中的统一动态电路模型,并运用状态方程和直流水阻负载对模型进行了仿真和实验验证.模拟车辆转向工况,仿真得出电池组对减小发动机转速和转矩超调量,平滑直流母线电压剧烈变化效果显著,并能发挥助力和吸收再生制动能量的能力.  相似文献   

16.
为了改善增程式电动汽车各项性能。依据某款电动汽车性能要求,对整车动力系统进行了动力系统参数匹配。在串联式混合动力电动汽车模型的基础上,运用Advisor对蓄电池、发电机等模型进行了优化与改进,对控制策略进行了仿真建模,分别计算出了发动机的高效与最优工作区域,建立了动力切换控制逻辑关系。在CYC_1015循环工况下对整车性能进行了研究。仿真结果表明:整车动力性、经济性和排放性均得到显著改善,最高车速大于140km/h,燃油机节油率达到37%,电动机峰值扭矩170Nm,工作效率为82.8%,比优化前提高3%。发动机峰值扭矩80Nm,工作效率为19.4%,比优化前提高29%。HC、CO与NOx排放量与优化前相比分别减少了75%、69.3%、100%。  相似文献   

17.
并联式混合动力汽车机械式自动变速器换档策略   总被引:1,自引:0,他引:1  
并联式混合动力汽车(Parallel Hybrid Electric Vehicle,PHEV)档位决策作为能量管理策略的一部分,对整车动力性、经济性及排放性能有较大影响.混合动力汽车换档策略不仅要考虑发动机,还要考虑电机和电池系统的影响.基于电池电能的等效燃油概念,通过考虑电池充、放电过程中的能量损失,将充、放电生成或消耗的电能折算为等效燃油,由此得到不同档位时整车的综合燃油消耗,进而选取燃油消耗较小时的档位使整车经济性能指标达到最优.同时,该方法也通用于装备液力自动变速器(Automatic Transmission,AT)等有级式自动变速器的混合动力汽车换档策略制定.  相似文献   

18.
中度混合动力汽车匀速下坡再生制动策略优化   总被引:4,自引:1,他引:3  
分析混合动力汽车匀速下坡再生制动过程;基于蓄电池充电效率模型、蓄电池温升模型及发电机效率模型,分别以混合动力汽车瞬时再生制动能量回收量最大和总制动能量回收量最大为优化目标,提出了瞬时再生制动优化控制策略和全局优化控制策略;分析了蓄电池温度对混合动力汽车再生制动能量回收效率的影响,计算了汽车在不同坡度和坡长的路况上再生制动能量回收效率,结果表明:全局优化控制策略优于瞬时优化控制策略,且坡度愈大或坡长愈长时,采用全局优化控制策略提高再生制动能量回收效率的效果愈显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号