首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complexity of the life cycle of the protozoan malaria parasite Plasmodium falciparum has hindered genetic analysis; even the number of chromosomes in P. falciparum is uncertain. The blood stages of rodent malaria parasites are haploid and hybridization with cloned complementary DNAs similarly suggests a haploid genome in P. falciparum blood stages (ref. 4 and our unpublished results). A novel approach to karyoptic and linkage analysis in P. falciparum has been provided recently by the technique of pulsed-field gradient (PFG) gel electrophoresis, which allows the fractionation of DNA molecules of 30-3,000 kilobases (kb), a range including the sizes of intact chromosomal DNA molecules from eukaryotes such as yeast and trypanosomatids. We describe here the fractionation by PFG electrophoresis of chromosomal DNA molecules from P. falciparum into at least seven discrete species which vary in size by up to 20% between different isolates. Several genes for P. faciparum antigens which contain repetitive sequences are located on different chromosomes. Surprisingly, two of the chromosomes seem to contain the same sequences.  相似文献   

2.
Protective immune responses against the asexual stages of the human malaria parasite, Plasmodium falciparum, are most probably directed against exposed antigenic determinants on the surface of the free merozoite or the infected red blood cell, and therefore antigens in these locations are candidates for testing as components of a defined molecular vaccine. To facilitate the search for such antigens, we recently developed a method for the expression of P. falciparum proteins in Escherichia coli as fused polypeptides. Many clones producing antigens were detected by screening with immune human sera. We show here that antibodies against the fused polypeptide expressed by one such clone react with a P. falciparum protein that is synthesized late in schizogony and is later present on the surface of the ring-infected erythrocyte. The protein is composed of repeating subunits of 8, 4 and 3 amino acids and is present in all isolates of P. falciparum examined.  相似文献   

3.
Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria   总被引:20,自引:0,他引:20  
Schofield L  Hewitt MC  Evans K  Siomos MA  Seeberger PH 《Nature》2002,418(6899):785-789
The malaria parasite Plasmodium falciparum infects 5-10% of the world's population and kills two million people annually. Fatalities are thought to result in part from pathological reactions initiated by a malarial toxin. Glycosylphosphatidylinositol (GPI) originating from the parasite has the properties predicted of a toxin; however, a requirement for toxins in general and GPI in particular in malarial pathogenesis and fatality remains unproven. As anti-toxic vaccines can be highly effective public health tools, we sought to determine whether anti-GPI vaccination could prevent pathology and fatalities in the Plasmodium berghei/rodent model of severe malaria. The P. falciparum GPI glycan of the sequence NH(2)-CH(2)-CH(2)-PO(4)-(Man alpha 1-2)6Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcNH(2)alpha 1-6myo-inositol-1,2-cyclic-phosphate was chemically synthesized, conjugated to carriers, and used to immunize mice. Recipients were substantially protected against malarial acidosis, pulmonary oedema, cerebral syndrome and fatality. Anti-GPI antibodies neutralized pro-inflammatory activity by P. falciparum in vitro. Thus, we show that GPI is a significant pro-inflammatory endotoxin of parasitic origin, and that several disease parameters in malarious mice are toxin-dependent. GPI may contribute to pathogenesis and fatalities in humans. Synthetic GPI is therefore a prototype carbohydrate anti-toxic vaccine against malaria.  相似文献   

4.
The malarial parasite Plasmodium vivax causes disease in humans, including chronic infections and recurrent relapses, but the course of infection is rarely fatal, unlike that caused by Plasmodium falciparum. To investigate differences in pathogenicity between P. vivax and P. falciparum, we have compared the subtelomeric domains in the DNA of these parasites. In P. falciparum, subtelomeric domains are conserved and contain ordered arrays of members of multigene families, such as var, rif and stevor, encoding virulence determinants of cytoadhesion and antigenic variation. Here we identify, through the analysis of a continuous 155,711-base-pair sequence of a P. vivax chromosome end, a multigene family called vir, which is specific to P. vivax. The vir genes are present at about 600-1,000 copies per haploid genome and encode proteins that are immunovariant in natural infections, indicating that they may have a functional role in establishing chronic infection through antigenic variation.  相似文献   

5.
I J Udeinya  L H Miller  I A McGregor  J B Jensen 《Nature》1983,303(5916):429-431
An important feature of Plasmodium falciparum malaria which differentiates it from other human malarias is that erythrocytes infected with trophozoites and schizonts are not present in the peripheral blood but are sequestered along capillary and venular endothelium. Infected erythrocytes attach via parasite-induced ultrastructural modifications on the surface of the infected cells, called 'knobs'. This sequestration may be important for parasite survival because it prevents infected erythrocytes from circulating through the spleen where they could be eliminated. We have established an in vitro correlate of sequestration and used it to demonstrate that immune sera from repeatedly infected Aotus monkeys inhibit binding of infected erythrocytes to endothelial cells. We have investigated whether antiserum that blocks binding of one isolate of P. falciparum to target cells can block or reverse binding of other isolates. We report here that sera which block or reverse binding are strain-specific, indicating that the corresponding antigens on the surface of the infected erythrocytes are strain (isolate)-specific.  相似文献   

6.
Singh SK  Hora R  Belrhali H  Chitnis CE  Sharma A 《Nature》2006,439(7077):741-744
Molecular processes that govern pathogenic features of erythrocyte invasion and cytoadherence in malaria are reliant on Plasmodium-specific Duffy-binding-like domains (DBLs). These cysteine-rich modules recognize diverse host cell-surface receptors during pathogenesis. DBLs of parasite erythrocyte-binding proteins mediate invasion, and those from the antigenically variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) have been implicated in cytoadherence. The simian and human malarial parasites, P. knowlesi and P. vivax, invade human erythrocytes exclusively through the host DARC receptor (Duffy antigen receptor for chemokines). Here we present the crystal structure of the P. knowlesi DBL domain (Pkalpha-DBL), which binds to DARC during invasion of human erythrocytes. Pkalpha-DBL retains the overall fold observed in DBLs from P. falciparum erythrocyte-binding antigen (EBA)-175 (ref. 4). Mapping the residues that have previously been implicated in binding highlights a fairly flat but exposed site for DARC recognition in subdomain 2 of Pkalpha-DBL; this is in sharp contrast to receptor recognition by EBA-175 (ref. 4). In Pkalpha-DBL, the residues that contact DARC and the clusters of residues under immune pressure map to opposite surfaces of the DBL, and suggest a possible mechanism for immune evasion by P. vivax. Our comparative structural analysis of Pkalpha-DBL and P. falciparum EBA-175 provides a framework for the understanding of malaria parasite DBLs, and may affect the development of new prophylactic and therapeutic strategies.  相似文献   

7.
Recently, a class of protein antigens of high relative molecular mass (Mt) which can induce protective immunity against blood-stage malaria has been identified. In Plasmodium falciparum the protein has a Mr of approximately 195,000 (P195). It is the precursor of three proteins of Mr 83,000 (83K), 42K and 19K which are the major surface antigens of merozoites; thus it may also be useful for immunization against P. falciparum. Three studies describing the isolation of single short complementary DNA clones for part of the P195 gene sequence have been reported. Here we describe the complete structure of the P195 gene determined from further DNA clones, its organization within genomic DNA and the location of the specific processing fragments within the primary amino-acid sequence.  相似文献   

8.
Plasmodium falciparum causes malaria infections in its human host. Its wide distribution in tropical countries is a major world health problem. Before a vaccine can be produced, the identification and characterization of parasite antigens is necessary. This can be achieved by the cloning and subsequent analysis of genes coding for parasite antigens. Recently established cDNA banks allow the expression of cDNA derived from the simian parasite Plasmodium knowlesi and P. falciparum in Escherichia coli. Recombinants encoding parasite antigens have been identified by immunodetection in both banks. Two of them contain repetitive units of 11 (ref. 7) or 12 (ref. 5) amino acids. We describe here the construction of an expression bank made directly from randomly generated fragments of P. falciparum genomic DNA. We detect several clones which react strongly with human African immune sera. One clone expresses an antigenic determinant composed of occasionally degenerated repeats of a peptide nonamer.  相似文献   

9.
The lethal form of human malaria caused by Plasmodium falciparum is virtually uncontrollable in many areas because of the development of drug resistance, in particular chloroquine resistance (CQR). CQR is biologically similar to the multiple drug resistance phenotype (MDR) of mammalian tumour cells, as both involve expulsion of drug from the cell and both can be reversed by calcium channel antagonists. A homologue (pfmdr1) of the mammalian multidrug resistance gene has been implicated in CQR because it is amplified in some CQR isolates of P. falciparum as is an mdr gene in MDR tumour cells. We show here that the complete sequences of pfmdr1 genes from 2 CQ sensitive (CQS) P. falciparum isolates are identical. In 5 CQR isolates, 1-4 key nucleotide differences resulted in amino acid substitutions. On the basis of these substitutions, we have correctly predicted the CQS/CQR status of a further 34 out of 36 isolates. This is a paradox as CQR arises much less frequently than would be predicted if single point mutations were sufficient. We conclude that a mutated pfmdr1 gene is one of at least two mutated genes required for CQR.  相似文献   

10.
Lectin-like polypeptides of P. falciparum bind to red cell sialoglycoproteins   总被引:14,自引:0,他引:14  
M Jungery  D Boyle  T Patel  G Pasvol  D J Weatherall 《Nature》1983,301(5902):704-705
Attempts to control human malaria by immunological means could be compromised by antigenic variability within and between different strains of malarial parasites1. A useful alternative approach might be to block parasite antigens which are important in the mechanisms of invasion of red cells. As the major human parasite Plasmodium falciparum is highly specific for human red cells, isolation of the proteins involved in the recognition of red cells by this parasite might be of particular value. Recent studies suggest that the major red cell sialoglycoproteins (SGPs), glycophorins A, B and possibly C, may carry the sites recognized by the parasite2-4. Furthermore, because certain carbohydrates present on SGPs such as N-acetylglucosamine are able to block invasion by the parasite5, they may be involved in the initial interaction between parasite and red cell. We have now identified parasite proteins which bind to SGP or N-acetylglucosamine on Sepharose 4B columns. Three proteins, of molecular weights (MWs) 140,000 (140K), 70K and 35K, seem to be specifically bound by N-acetylglucosamine.  相似文献   

11.
Rapid switching to multiple antigenic and adhesive phenotypes in malaria.   总被引:67,自引:0,他引:67  
Adhesion of parasitized erythrocytes to post-capillary venular endothelium or uninfected red cells is strongly implicated in the pathogenesis of severe Plasmodium falciparum malaria. Neoantigens at the infected red-cell surface adhere to a variety of host receptors, demonstrate serological diversity in field isolates and may also be a target of the host-protective immune response. Here we use sequential cloning of P. falciparum by micromanipulation to investigate the ability of a parasite to switch antigenic and cytoadherence phenotypes. Our data show that antigens at the parasitized cell surface undergo clonal variation in vitro in the absence of immune pressure at the rate of 2% per generation with concomitant modulations of the adhesive phenotype. A clone has the potential to switch at high frequency to a variety of antigenic and adhesive phenotypes, including a new type of cytoadherence behaviour, 'auto-agglutination' of infected erythrocytes. This rapid appearance of antigenic and functional heterogeneity has important implications for pathogenesis and acquired immunity.  相似文献   

12.
Endemic Burkitt's lymphoma, a tumour of children in which B lymphocytes are infected with Epstein-Barr virus (EBV), is common in areas of Africa where malaria is holoendemic. The tumour is characterized by chromosome translocations; usually the terminal portion of chromosome 8 containing the c-myc gene is translocated to chromosome 14, near the enhancer of the immunoglobulin heavy-chain locus. Less frequent are translocations of chromosome 8 to the kappa light-chain locus of chromosome 2 or to the lambda light-chain locus of chromosome 22. In vitro, EBV induces B cells to proliferate and secrete immunoglobulin and antibody. However, in vivo the infected B lymphocytes are under immunological control, so that abnormal proliferation is found only in immunosuppressed patients. Such patients are subsequently liable to develop lymphomas. Burkitt believed that the tumour he had described resulted from interaction between a virus(es) and a "reticuloendothelial system altered by chronic and heavy infection by malarial or other parasites". We report here that during an attack of Plasmodium falciparum malaria, T-cell subpopulations are radically altered so that, in vitro, B lymphocytes infected with EBV proliferate abnormally to secrete large amounts of immunoglobulin and antibody. This phenomenon offers some explanation for the increased incidence of Burkitt's tumour and the high levels of immunoglobulin found in people living in areas where P. falciparum malaria is common.  相似文献   

13.
Preiser PR  Jarra W  Capiod T  Snounou G 《Nature》1999,398(6728):618-622
The recognition and invasion of host cells are mediated by components of the apical complex of the ookinete, sporozoite and merozoite stages of Plasmodium parasites. The paired rhoptries (organelles involved in host-cell recognition) in the apical complex contain many proteins of as-yet unknown function. In the rodent malaria agent P. yoelii yoelii, a multigene family codes for merozoite rhoptry proteins of relative molecular mass 235,000 (p235 proteins); these proteins are thought to determine the subset of erythrocytes that the parasites invade. Further support for this idea came from the identification of a region in p235 with weak but significant homology to reticulocyte-binding protein-2 of P. vivax and the demonstration that at least one p235 member binds to the erythrocyte surface membrane. Here, using single, micromanipulated P.y.yoelii parasites, we describe a new mechanism of gene expression by which the merozoites originating from a single schizont each express a distinct member of this multigene family. We propose that this new type of clonal phenotypic variation provides the parasite with a survival strategy in the mammalian host; this strategy contributes to the observed chronicity of malarial infections. This phenomenon is genetically and functionally distinct from classical antigenic variation, which is mediated by the var multigene family of P. falciparum.  相似文献   

14.
An ideal vaccine should elicit a long lasting immune response against the natural parasite, both at the T- and B-cell level. The immune response should occur in all individuals and be directed against determinants that do not vary in the natural parasite population. A major problem in designing synthetic peptide vaccines is that T cells generally recognize peptide antigens only in association with one or a few of the many variants of major histocompatibility complex (MHC) antigens. During the characterization of epitopes of the malaria parasite Plasmodium falciparum that are recognized by human T cells, we analysed a sequence of the circumsporozoite protein, and found that synthetic peptides corresponding to this sequence are recognized by T cells in association with many different MHC class II molecules, both in mouse and in man. This region of the circumsporozoite protein is invariant in different parasite isolates. Peptides derived from this region should be capable of inducing T-cell responses in individuals of most HLA-DR types, and may represent good candidates for inclusion in an effective anti-malaria peptide vaccine.  相似文献   

15.
Plotkin JB  Dushoff J  Fraser HB 《Nature》2004,428(6986):942-945
Selective pressures on proteins are usually measured by comparing nucleotide sequences. Here we introduce a method to detect selection on the basis of a single genome sequence. We catalogue the relative strength of selection on each gene in the entire genomes of Mycobacterium tuberculosis and Plasmodium falciparum. Our analysis confirms that most antigens are under strong selection for amino-acid substitutions, particularly the PE/PPE family of putative surface proteins in M. tuberculosis and the EMP1 family of cytoadhering surface proteins in P. falciparum. We also identify many uncharacterized proteins that are under strong selection in each pathogen. We provide a genome-wide analysis of natural selection acting on different stages of an organism's life cycle: genes expressed in the ring stage of P. falciparum are under stronger positive selection than those expressed in other stages of the parasite's life cycle. Our method of estimating selective pressures requires far fewer data than comparative sequence analysis, and it measures selection across an entire genome; the method can readily be applied to a large range of sequenced organisms.  相似文献   

16.
M H Rodriguez  M Jungery 《Nature》1986,324(6095):388-391
Several observations suggest that iron is essential for the development of malaria parasites but there is evidence that the parasites in erythrocytes do not obtain iron from haemoglobin. The total haemin level in parasitized erythrocytes does not vary during parasite development, indicating that the iron-containing moiety of haemoglobin is not detectably metabolized. Although parasite proteases can degrade the protein part of haemoglobin in red cells, no parasite enzymes that degrade haemin have been identified. In mammalian cells, haemin is degraded to carbon monoxide and bilirubin by the enzyme haeme oxygenase. This enzyme has not been found in malaria parasites. In fact haemin has been found to be toxic to parasite carbohydrate metabolism. Thus, iron apparently cannot be liberated from haemin and instead is sequestered in infected red cells as haemozoin, the characteristic pigment associated with malarial infection. If iron bound to transferrin is the source of ferric ions for malaria parasites within mature erythrocytes, then the parasite must synthesize its own transferrin receptor and localize it on the surface of the infected cell, because the receptors for transferrin are lost during erythrocyte maturation. Our results here suggest that Plasmodium falciparum synthesizes its own transferrin receptors enabling it to take up iron from transferrin by receptor-mediated endocytosis.  相似文献   

17.
Red blood cells infected with mature stages of the malaria parasite Plasmodium falciparum bind to the endothelial lining of capillaries and venules. This sequestration is important for the survival of the parasite but may have severe consequences for the host. For example, it is involved in the causation of cerebral malaria which carries 25% mortality. Knob-like protrusions present on the surface of infected erythrocytes have been considered necessary but not sufficient for this cytoadherence. Here we describe the adhesion to endothelial cells of infected erythrocytes which do not have knobs. A human monoclonal antibody (33G2) which was specific for an epitope containing regularly spaced dimers of glutamic acid present in the repeated amino-acid sequences of some defined P. falciparum antigens was found to inhibit cyto-adherence and may therefore be an important reagent for elucidating the molecular basis of parasite sequestration.  相似文献   

18.
为了检测四川地区结核分枝杆菌KatG基因315位点的突变特点,并建立耐异烟肼结核分枝杆菌快速检测方法。运用反向杂交技术检测四川地区65株耐异烟肼和10株异烟肼敏感结核分枝杆菌KatG基因315位点的突变,并用DNA直接测序法验证杂交结果。结果显示在65株耐异烟肼结核分枝杆菌中,发现41株在KatG基因315位点发生突变,突变率最大的是AGC→ACC,占90%,其次是AGC→AAC和AGC→ATC突变。DNA序列测定结果进一步验证了反向杂交的结果。运用反向杂交技术检测四川地区结核分枝杆菌KatG基因315位点的突变的检出率和特异性分别是63%和100%。反向斑点杂交技术能快速有效地检测四川地区结核分枝杆菌KatG基因315位点的突变。  相似文献   

19.
Molecular cloning of lymphadenopathy-associated virus   总被引:3,自引:0,他引:3  
Lymphadenopathy-associated virus (LAV) is a human retrovirus first isolated from a homosexual patient with lymphadenopathy syndrome, frequently a prodrome or a benign form of acquired immune deficiency syndrome (AIDS). Other LAV isolates have subsequently been recovered from patients with AIDS or pre-AIDS and all available data are consistent with the virus being the causative agent of AIDS. The virus is propagated on activated T lymphocytes and has a tropism for the T-cell subset OKT4 (ref. 6), in which it induces a cytopathic effect. The major core protein of LAV is antigenically unrelated to other known retroviral antigens. LAV-like viruses have more recently been independently isolated from patients with AIDS and pre-AIDS. These viruses, called human T-cell leukaemia/lymphoma virus type III (HTLV-III) and AIDS-associated retrovirus (ARV), seem to have many characteristics in common with LAV and probably represent independent isolates of the LAV prototype. We have sought to characterize LAV by the molecular cloning of its genome. A cloned LAV complementary DNA was used to screen a library of recombinant phages constructed from the genomic DNA of LAV-infected T lymphocytes. Two families of clones were characterized which differ in a restriction site. The viral genome is longer than any other human retroviral genome (9.1-9.2 kilobases).  相似文献   

20.
C M Rooney  M Rowe  L E Wallace  A B Rickinson 《Nature》1985,317(6038):629-631
The pathogenesis of Epstein-Barr (EB) virus-positive Burkitt's lymphoma (BL) appears to involve the combined actions of virus-induced B-cell proliferation, and a rare chromosomal translocation juxtaposing c-myc and immunoglobulin gene loci in a single B cell; holoendemic malarial infection in some way facilitates the oncogenic process. Outgrowth of the EB virus-positive tumour suggests either breakdown or evasion of those immune controls, in particular cytotoxic T-cell responses against the virus-induced lymphocyte-detected membrane antigen LYDMA, which limit virus-infected B-cell numbers in healthy virus carriers. Immunosuppression, such as that which malarial infection may induce, cannot itself be a sufficient explanation in this regard since our studies have identified a number of BL patients who retain detectable LYDMA-specific T-cell surveillance. The present work shows that in many cases of virus-associated BL, the emerging malignant clone is insensitive to such surveillance. Several EB virus-positive BL cell lines, recently established in vitro and expressing the class I histocompatibility locus antigens (HLAs) which restrict cytotoxic T-cell function, were not killed by HLA-matched LYDMA-specific effector populations in assays where the EB virus-positive lymphoblastoid cell line (LCL), derived from normal B cells of the same patient, sustained high levels of lysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号